Answer:
9.64g/mL
Explanation:
Given parameters:
Mass of the metal = 106g
Volume of cylinder = 50mL
Volume difference = 31mL - 20mL = 11mL
Unknown:
Density of the metal = ?
Solution:
To find the density of the metal, we use;
Density =
Density =
= 9.64g/mL
Answer:
See explaination
Explanation:
The invariant mass of an electron is approximately9. 109×10−31 kilograms, or5. 489×10−4 atomic mass units. On the basis of Einstein's principle of mass–energy equivalence, this mass corresponds to a rest energy of 0.511 MeV.
Check attachment for further solution to the exercise.
Answer:
The required volume of hexane is 0.66245 Liters.
Explanation:
Volume of octane = v=1.0 L=
Density of octane= d = 
Mass of octane ,m= 
Moles of octane =
Mole percentage of Hexane = 45%
Mole percentage of octane = 100% - 45% = 55%

Total moles = 11.212 mol
Moles of hexane :

Moles of hexane = 5.0454 mol
Mass of 5.0454 moles of hexane,M = 5.0454 mol × 86 g/mol=433.9044 g
Density of the hexane,D = 
Volume of hexane = V

(1 cm^3= 0.001 L)
The required volume of hexane is 0.66245 Liters.
Explanation:
1. Cross-pollination between true-breeding plant with green pods and true-breeding plant with yellow pods.
2.The yellow pods do not appear because the heterozygous dominant for the green pods. So the green is dominant while the yellow is recessive. So the green is what comes out has the result..
Answer:
37.98 kPa.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have different values of P and V:
<em>(P₁V₁) = (P₂V₂)</em>
<em></em>
P₁ = 101.3 kPa, V₁ = 1.5 L,
P₂ = ??? kPa, V₂ = 4.0 L.
- Applying in the above equation
<em>(P₁V₁) = (P₂V₂)</em>
<em></em>
<em>∴ P₂ = (P₁V₁)/V₂</em> = (101.3 kPa)(1.5 L)/(4.0 L) = <em>37.98 kPa.</em>