The correct option is D.
The Quantum theory states that both light and matter are made up of small particles that possess wavelike and particle like properties. This is described as the dual nature of light and matter. Light is made up of photons while matter is made up of electron, proton and neutron. The two can behave as both waves and particles.
Answer:
Law of refraction
Explanation:
An experiment to analyze the refraction of light in water can easily be performed with a laser pointer and protractor.
We throw the fishing rod line into the water, place the protractor at the point where the line touches the water and use the direction of the line for the direction of the laser pointer (on), the laser is visible by the reflection on the particles in the air.
The vertical line is called Normal and all angles must be measured with respect to this reference in optics.
Having these angles and the refractive index of water we can use the law of refraction
n₁ sin θ₁ = n₂ sin θ₂
θ₂ =
we can repeat several times to analyze several different input points (different angles) and to decrease the errors in the measurements.
the refractive index of air is n1 = 1 and n2= 1.33 (water)
Answer:
The length of the rod for the condition on the question to be met is 
Explanation:
The Diagram for this question is gotten from the first uploaded image
From the question we are told that
The mass of the rod is 
The mass of each small bodies is 
The moment of inertia of the three-body system with respect to the described axis is 
The length of the rod is L
Generally the moment of inertia of this three-body system with respect to the described axis can be mathematically represented as

Where
is the moment of inertia of the rod about the describe axis which is mathematically represented as

And
the moment of inertia of the two small bodies which (from the diagram can be assumed as two small spheres) can be mathematically represented as
![I_m = m * [\frac{L} {2} ]^2 = m* \frac{L^2}{4}](https://tex.z-dn.net/?f=I_m%20%20%3D%20%20%20m%20%2A%20%5B%5Cfrac%7BL%7D%20%7B2%7D%20%5D%5E2%20%3D%20%20m%2A%20%20%5Cfrac%7BL%5E2%7D%7B4%7D)
Thus 
Hence

=> ![I = [\frac{M}{12} + \frac{m}{2}] L^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20%20%20%5B%5Cfrac%7BM%7D%7B12%7D%20%20%2B%20%5Cfrac%7Bm%7D%7B2%7D%5D%20L%5E2)
substituting vales we have
![0.929 = [\frac{3.41}{12} + \frac{0.249}{2}] L^2](https://tex.z-dn.net/?f=0.929%20%20%20%3D%20%20%20%20%5B%5Cfrac%7B3.41%7D%7B12%7D%20%20%2B%20%5Cfrac%7B0.249%7D%7B2%7D%5D%20L%5E2)


Answer:
Now e is due to the ring at a
So
We say
1/4πEo(ea/ a²+a²)^3/2
= 1/4πEo ea/2√2a³
So here E is faced towards the ring
Next is E due to a point at the centre
So
E² = 1/4πEo ( e/a²)
Finally we get the total
Et= E²-E
= e/4πEo(2√2-1/2√2)
So the direction here is away from the ring
(18 gallon/tank) x (23 mile/gallon) = <em>414 mile/tank</em>