An object is moving with constant velocity downwards on a frictionless inclined plane that makes an angle of θ with the horizontal.
1. Which direction does the force of gravity act on the object?
2. Which direction does the normal force act on the object?
Which force is responsible for the object moving down the incline?
Answer:
The answer is below
Explanation:
1. When an object is moving with a constant velocity, the direction the force of gravity act on the object is DIRECTLY DOWN.
2. When an object is moving with a constant velocity, the direction the normal force act on the object "perpendicular to the surface of the plane."
3. When an object is moving with a constant velocity, the force that is responsible for the object moving down the incline is "the component of the gravitational force parallel to the surface of the inclined plane."
Answer:
a) 0.167 μC/m^2
b) 1.887 * 10^4 V/m
Explanation:
Hello!
First let's find the surface charge density:
a)
Since thesatellite is metallic, the accumalted charge will be uniformly distribuited on its surface. Therefore the charge density σ will be:
σ = Q/A
Where A is the area of the satellite, which is:
A=4πr^2 = πd^2 = π(1.9m)^2
Therefore:
σ = (1.9)/(π (1.9)^2) μC/m^2 = 0.167 μC/m^2
Now let's calculate the electric field
b)
Just outside the surface of the satellite the elctric field will be:
E = σ/ε0
Where ε0=8.85×10^−12 C/Vm
Therefore:
E = (0.167*10^-6 C/m^2) / (8.85*10^-12 C/Vm) = 0.01887 *10^6 V/m
E = 1.887 * 10^4 V/m