1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
3 years ago
13

A bank loaned out $22,500, part of it at the rate of 14% annual interest, and the rest at 2% annual interest. The total interest

earned for both loans was $1,890.00. How much was loaned at each rate?
Mathematics
1 answer:
prisoha [69]3 years ago
3 0

Answer:

░░█░░░░░░▄██▀▄▄░░░░░▄▄▄░░░█

░▀▒▄▄▄▒░█▀▀▀▀▄▄█░░░██▄▄█░░░█

█▒█▒▄░▀▄▄▄▀░░░░░░░░█░░░▒▒▒▒▒█

█▒█░█▀▄▄░░░░░█▀░░░░▀▄░░▄▀▀▀▄▒█

░█▀▄░█▄░█▀▄▄░▀░▀▀░▄▄▀░░░░█░░█

░░█░░▀▄▀█▄▄░█▀▀▀▄▄▄▄▀▀█▀██░█

░░░█░░██░░▀█▄▄▄█▄▄█▄████░█

░░░░█░░░▀▀▄░█░░░█░███████░█

░░░░░▀▄░░░▀▀▄▄▄█▄█▄█▄█▄▀░░█

░░░░░░░▀▄▄░▒▒▒▒░░░░░░░░░░█

░░░░░░░░░░▀▀▄▄░▒▒▒▒▒▒▒▒▒▒░█

░░░░░░░░░░░░░░▀▄▄▄▄▄░░░░░█

Step-by-step explanation:

░░█░░░░░░▄██▀▄▄░░░░░▄▄▄░░░█

░▀▒▄▄▄▒░█▀▀▀▀▄▄█░░░██▄▄█░░░█

█▒█▒▄░▀▄▄▄▀░░░░░░░░█░░░▒▒▒▒▒█

█▒█░█▀▄▄░░░░░█▀░░░░▀▄░░▄▀▀▀▄▒█

░█▀▄░█▄░█▀▄▄░▀░▀▀░▄▄▀░░░░█░░█

░░█░░▀▄▀█▄▄░█▀▀▀▄▄▄▄▀▀█▀██░█

░░░█░░██░░▀█▄▄▄█▄▄█▄████░█

░░░░█░░░▀▀▄░█░░░█░███████░█

░░░░░▀▄░░░▀▀▄▄▄█▄█▄█▄█▄▀░░█

░░░░░░░▀▄▄░▒▒▒▒░░░░░░░░░░█

░░░░░░░░░░▀▀▄▄░▒▒▒▒▒▒▒▒▒▒░█

░░░░░░░░░░░░░░▀▄▄▄▄▄░░░░░█

You might be interested in
Can you help please thank you
Nostrana [21]

Counterclockwise is a rotation towards the left, as in the triangle will move to the position before it.

The correct answer is the fourth option, triangle DEF.

Hope this helps! :)

3 0
3 years ago
F(x) = 2x3 + 7x2 – 4x – 5
qaws [65]

Answer:

Its 3

Step-by-step explanation:

7 0
3 years ago
What is the volume of the cube shown?<br> 112 in<br> 30 in<br> 6<br> in<br> 2<br> in
Elenna [48]

Answer:

11 \frac{25}{64}

<h3>First answer is correct</h3>

Step-by-step explanation:

2 \frac{1}{4}  \times 2 \frac{1}{4}  \times 2 \frac{1}{4}  \\  \frac{9}{4}  \times  \frac{9}{4}  \times  \frac{9}{4}  \\  =  \frac{729}{64}   \\ = 11 \frac{25}{64} \:  \:  \:   {in}^{3}

7 0
3 years ago
PLEASE HELP, GOOD ANSWERS GET BRAINLIEST. +40 POINTS WRONG ANSWERS GET REPORTED
MA_775_DIABLO [31]
1. Ans:(A) 123

Given function: f(x) = 8x^2 + 11x
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(8x^2 + 11x)
=> \frac{d}{dx} f(x) = \frac{d}{dx}(8x^2) + \frac{d}{dx}(11x)
=> \frac{d}{dx} f(x) = 2*8(x^{2-1}) + 11
=> \frac{d}{dx} f(x) = 16x + 11

Now at x = 7:
\frac{d}{dx} f(7) = 16(7) + 11

=> \frac{d}{dx} f(7) = 123

2. Ans:(B) 3

Given function: f(x) =3x + 8
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(3x + 8)
=> \frac{d}{dx} f(x) = \frac{d}{dx}(3x) + \frac{d}{dx}(8)
=> \frac{d}{dx} f(x) = 3*1 + 0
=> \frac{d}{dx} f(x) = 3

Now at x = 4:
\frac{d}{dx} f(4) = 3 (as constant)

=>Ans:  \frac{d}{dx} f(4) = 3

3. Ans:(D) -5

Given function: f(x) = \frac{5}{x}
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(\frac{5}{x})
or 
\frac{d}{dx} f(x) = \frac{d}{dx}(5x^{-1})
=> \frac{d}{dx} f(x) = 5*(-1)*(x^{-1-1})
=> \frac{d}{dx} f(x) = -5x^{-2}

Now at x = -1:
\frac{d}{dx} f(-1) = -5(-1)^{-2}

=> \frac{d}{dx} f(-1) = -5 *\frac{1}{(-1)^{2}}
=> Ans: \frac{d}{dx} f(-1) = -5

4. Ans:(C) 7 divided by 9

Given function: f(x) = \frac{-7}{x}
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(\frac{-7}{x})
or 
\frac{d}{dx} f(x) = \frac{d}{dx}(-7x^{-1})
=> \frac{d}{dx} f(x) = -7*(-1)*(x^{-1-1})
=> \frac{d}{dx} f(x) = 7x^{-2}

Now at x = -3:
\frac{d}{dx} f(-3) = 7(-3)^{-2}

=> \frac{d}{dx} f(-3) = 7 *\frac{1}{(-3)^{2}}
=> Ans: \frac{d}{dx} f(-3) = \frac{7}{9}

5. Ans:(C) -8

Given function: 
f(x) = x^2 - 8

Now if we apply limit:
\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^2 - 8)

=> \lim_{x \to 0} f(x) = (0)^2 - 8
=> Ans: \lim_{x \to 0} f(x) = - 8

6. Ans:(C) 9

Given function: 
f(x) = x^2 + 3x - 1

Now if we apply limit:
\lim_{x \to 2} f(x) = \lim_{x \to 2} (x^2 + 3x - 1)

=> \lim_{x \to 2} f(x) = (2)^2 + 3(2) - 1
=> Ans: \lim_{x \to 2} f(x) = 4 + 6 - 1 = 9

7. Ans:(D) doesn't exist.

Given function: f(x) = -6 + \frac{x}{x^4}
In this case, even if we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

Check:
f(x) = -6 + \frac{x}{x^4} \\ f(x) = -6 + \frac{1}{x^3} \\ f(x) = \frac{-6x^3 + 1}{x^3} \\ Rationalize: \\ f(x) = \frac{-6x^3 + 1}{x^3} * \frac{x^{-3}}{x^{-3}} \\ f(x) = \frac{-6x^{3-3} + x^{-3}}{x^0} \\ f(x) = -6 + \frac{1}{x^3} \\ Same

If you apply the limit, answer would be infinity.

8. Ans:(A) Doesn't Exist.

Given function: f(x) = 9 + \frac{x}{x^3}
Same as Question 7
If we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

9, 10.
Please attach the graphs. I shall amend the answer. :)

11. Ans:(A) Doesn't exist.

First We need to find out: \lim_{x \to 9} f(x) where,
f(x) = \left \{ {{x+9, ~~~~~x \textless 9} \atop {9- x,~~~~~x \geq 9}} \right.

If both sides are equal on applying limit then limit does exist.

Let check:
If x \textless 9: answer would be 9+9 = 18
If x \geq 9: answer would be 9-9 = 0

Since both are not equal, as 18 \neq 0, hence limit doesn't exist.


12. Ans:(B) Limit doesn't exist.

Find out: \lim_{x \to 1} f(x) where,

f(x) = \left \{ {{1-x, ~~~~~x \textless 1} \atop {x+7,~~~~~x \textgreater 1} } \right. \\ and \\ f(x) = 8, ~~~~~ x=1

If all of above three are equal upon applying limit, then limit exists.

When x < 1 -> 1-1 = 0
When x = 1 -> 8
When x > 1 -> 7 + 1 = 8

ALL of the THREE must be equal. As they are not equal. 0 \neq 8; hence, limit doesn't exist.

13. Ans:(D) -∞; x = 9

f(x) = 1/(x-9).

Table:

x                      f(x)=1/(x-9)       

----------------------------------------

8.9                       -10

8.99                     -100

8.999                   -1000

8.9999                 -10000

9.0                        -∞


Below the graph is attached! As you can see in the graph that at x=9, the curve approaches but NEVER exactly touches the x=9 line. Also the curve is in downward direction when you approach from the left. Hence, -∞,  x =9 (correct)

 14. Ans: -6

s(t) = -2 - 6t

Inst. velocity = \frac{ds(t)}{dt}

Therefore,

\frac{ds(t)}{dt} = \frac{ds(t)}{dt}(-2-6t) \\ \frac{ds(t)}{dt} = 0 - 6 = -6

At t=2,

Inst. velocity = -6


15. Ans: +∞,  x =7 

f(x) = 1/(x-7)^2.

Table:

x              f(x)= 1/(x-7)^2     

--------------------------

6.9             +100

6.99           +10000

6.999         +1000000

6.9999       +100000000

7.0              +∞

Below the graph is attached! As you can see in the graph that at x=7, the curve approaches but NEVER exactly touches the x=7 line. The curve is in upward direction if approached from left or right. Hence, +∞,  x =7 (correct)

-i

7 0
3 years ago
Read 2 more answers
What is the answer ​
Mandarinka [93]

Answer:

A

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • A company builds computers. It costs $6,700 to build 10 computers and $12,200 to build 20 computers. Which equation models the c
    6·1 answer
  • 4. The elementary school cafeteria is considering changing the menu
    7·2 answers
  • What is two hundred ninety one divided by two?
    7·2 answers
  • Write two ways to group and add 4+7+2
    5·1 answer
  • you bought a boat for $10,000. you have owned it for one year, and it is now worth $8,500. what is the percent decrease in your
    13·2 answers
  • 6x-3y=6 y=2x+5 USE SUBSTITUTION SHOW YOUR WORK
    5·2 answers
  • What is the length of the line segment whose endpoints are (-1,-1) and (3,2)?
    6·1 answer
  • Birgetta Homan is a medical assistant. Her annual salary is $31,200. What is her semimonthly salary?
    9·2 answers
  • Consider the system of inequalities and its graph.
    8·2 answers
  • Please help me with this problem
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!