Answer:

Explanation:
We are asked to find the specific heat capacity of a liquid. We are given the heat added, the mass, and the change in temperature, so we will use the following formula.

The heat added (q) is 47.1 Joules. The mass (m) of the liquid is 14.0 grams. The specific heat (c) is unknown. The change in temperature (ΔT) is 1.80 °C.
- q= 47.1 J
- m= 14.0 g
- ΔT= 1.80 °C
Substitute these values into the formula.

Multiply the 2 numbers in parentheses on the right side of the equation.


We are solving for the heat capacity of the liquid, so we must isolate the variable c. It is being multiplied by 25.2 grams * degrees Celsius. The inverse operation of multiplication is division, so we divide both sides of the equation by (25.2 g * °C).



The original measurements of heat, mass, and temperature all have 3 significant figures, so our answer must have the same. For the number we found that is the hundredth place. The 9 in the thousandth place to the right tells us to round the 6 up to a 7.

The heat capacity of the liquid is approximately 1.87 J/g°C.
Answer:
vHe / vNe = 2.24
Explanation:
To obtain the velocity of an ideal gas you must use the formula:
v = √3RT / √M
Where R is gas constant (8.314 kgm²/s²molK); T is temperature and M is molar mass of the gas (4x10⁻³kg/mol for helium and 20,18x10⁻³ kg/mol for neon). Thus:
vHe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol
vNe = √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
The ratio is:
vHe / vNe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol / √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
vHe / vNe = √20.18x10⁻³kg/mol / √4x10⁻³kg/mol
<em>vHe / vNe = 2.24</em>
<em />
I hope it helps!
the answer is d, cuz i just did it rn on my study island and i got it right :)
Answer:
11 electrons
Explanation:
The atomic number of sodium is 11. This tells us that sodium has 11 protons and because it is neutral it has 11 electrons. The mass number of an element tells us the number of protons AND neutrons in an atom (the two particles that have a measurable mass).
Answer
find out the number of moles and use the molar ratio (numbers in front of formulas (in this case they are all 1) to determine how many moles of each product you are going to get theoretically
n=m/M is the equation to use to get moles here
30.8 gm/32.04 g/mol=0.9612 moles of the methanol and also of the formaldehyde so
0.9612 moles of the formaldehyde x molar mass (M) 30.73 g/mol= 29.54 gm which is the theoretical yield you already have the actual yield of 24.7 gm
then divide the actual by the theoretical to get the % yield which is 83.6%
Explanation: