Answer:
a) 53 MPa, 14.87 degree
b) 60.5 MPa
Average shear = -7.5 MPa
Explanation:
Given
A = 45
B = -60
C = 30
a) stress P1 = (A+B)/2 + Sqrt ({(A-B)/2}^2 + C)
Substituting the given values, we get -
P1 = (45-60)/2 + Sqrt ({(45-(-60))/2}^2 + 30)
P1 = 53 MPa
Likewise P2 = (A+B)/2 - Sqrt ({(A-B)/2}^2 + C)
Substituting the given values, we get -
P1 = (45-60)/2 - Sqrt ({(45-(-60))/2}^2 + 30)
P1 = -68 MPa
Tan 2a = C/{(A-B)/2}
Tan 2a = 30/(45+60)/2
a = 14.87 degree
Principal stress
p1 = (45+60)/2 + (45-60)/2 cos 2a + 30 sin2a = 53 MPa
b) Shear stress in plane
Sqrt ({(45-(-60))/2}^2 + 30) = 60.5 MPa
Average = (45-(-60))/2 = -7.5 MPa
The answer is b, I hope this helps you
Answer:
a) P ≥ 22.164 Kips
b) Q = 5.4 Kips
Explanation:
GIven
W = 18 Kips
μ₁ = 0.30
μ₂ = 0.60
a) P = ?
We get F₁ and F₂ as follows:
F₁ = μ₁*W = 0.30*18 Kips = 5.4 Kips
F₂ = μ₂*Nef = 0.6*Nef
Then, we apply
∑Fy = 0 (+↑)
Nef*Cos 12º - F₂*Sin 12º = W
⇒ Nef*Cos 12º - (0.6*Nef)*Sin 12º = 18
⇒ Nef = 21.09 Kips
Wedge moves if
P ≥ F₁ + F₂*Cos 12º + Nef*Sin 12º
⇒ P ≥ 5.4 Kips + 0.6*21.09 Kips*Cos 12º + 21.09 Kips*Sin 12º
⇒ P ≥ 22.164 Kips
b) For the static equilibrium of base plate
Q = F₁ = 5.4 Kips
We can see the pic shown in order to understand the question.
Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω