Answer:
s = 30330.7 m = 30.33 km
Explanation:
First we need to calculate the speed of sound at the given temperature. For this purpose we use the following formula:
v = v₀√[T/273 k]
where,
v = speed of sound at given temperature = ?
v₀ = speed of sound at 0°C = 331 m/s
T = Given Temperature = 10°C + 273 = 283 k
Therefore,
v = (331 m/s)√[283 k/273 k]
v = 337 m/s
Now, we use the following formula to calculate the distance traveled by sound:
s = vt
where,
s = distance traveled = ?
t = time taken = 90 s
Therefore,
s = (337 m/s)(90 s)
<u>s = 30330.7 m = 30.33 km</u>
The helium may be treated as an ideal gas, so that
(p*V)/T =constant
where
p = pressure
V = volume
T = temperature.
Note that
7.5006 x 10⁻³ mm Hg = 1 Pa
1 L = 10⁻³ m³
Given:
At ground level,
p₁ = 752 mm Hg
= (752 mm Hg)/(7.5006 x 10⁻³ mm Hg/Pa)
= 1.0026 x 10⁵ Pa
V₁ = 9.47 x 10⁴ L = (9.47 x 10⁴ L)*(10⁻³ m³/L)
= 94.7 m³
T₁ = 27.8 °C = 27.8 + 273 K
= 300.8 K
At 36 km height,
P₂ = 73 mm Hg = 73/7.5006 x 10⁻³ Pa
= 9.7326 x 10³ Pa
T₂ = 235 K
If the volume at 36 km height is V₂, then
V₂ = (T₂/p₂)*(p₁/T₁)*V₁
= (235/9.7326 x 10³)*(1.0026 x 10⁵/300.8)*94.7
= 762.15 m³
Answer: 762.2 m³
Answer:
a. 7.38 N b. 40.87 N c. 0.113 kg-m²
Explanation:
Answer:
according to the new geometry lesson alcometry which will after 11 years in geometry
Answer:
Acceleration is -30000 mi/h²
Distance travelled in the 3 seconds of deceleration is 261.888 feet
Explanation:
t = Time taken for the car to slow down = 3 s =
u = Initial velocity = 75 mi/h
v = Final velocity = 50 mi/h
s = Displacement
a = Acceleration
Equation of motion

Acceleration is -30000 mi/h²

Converting to feet
1 mile = 5280 feet
0.0496 mile = 0.0496×5280 = 261.888 feet
Distance travelled in the 3 seconds of deceleration is 261.888 feet