1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
3 years ago
9

A 1050 kg sports car is moving westbound at 13.0 m/s on a level road when it collides with a 6320 kg truck driving east on the s

ame road at 12.0 m/s. The two vehicles remain locked together after the collision. What is the velocity (magnitude) of the two vehicles just after the collision?
At what speed should the truck have been moving so that it and car are both stopped in the collision?
Find the change in kinetic energy of the system of two vehicles for the situations of part A.
Find the change in kinetic energy of the system of two vehicles for the situations of part C.
Physics
1 answer:
Mila [183]3 years ago
6 0

Answer:

a) v_{3} =8.43 m/s

b) v_{2}=2.15m/s

c) ΔK=-28.18x10^4J

d)ΔK=-10.33x10^4J

Explanation:

From the exercise we know that there is a collision of a sports car and a truck.

So, the sport car is going to be our object number 1 and the truck object number 2.

m_{1}=1050kg\\v_{1}=-13m/s\\m_{2}=6320kg\\v_{2}=12m/s

Since the two vehicles remain locked together after the collision the final mass is:

m_{3}=7370kg

a) To find the velocity of the two vehicles just after the collision we must use linear's momentum principle

p_{1}=p_{2}

m_{1}v_{1}+ m_{2}v_{2}=m_{3}v_{3}

v_{3}=\frac{m_{1}v_{1}+m_{2}v_{2}}{m_{3}}=\frac{(1050kg)(-13m/s)+(6320kg)(12m/s)}{7370kg}

v_{3}=8.43m/s

b) To find the speed the truck should have had so both vehicles stopped in the collision we need to use the same principle used before

m_{1}v_{1}+ m_{2}v_{2}=0

v_{2}=\frac{-m_{1}v_{1}}{m_{2} }=\frac{-(1050kg)(-13m/s)}{(6320kg)}=2.15m/s

c) To find the change in kinetic energy we need to do the following steps:

ΔK=k_{2}-k_{1}=\frac{1}{2}m_{3}v_{3}^{2}-(\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2} )

ΔK=\frac{1}{2}(7370)(8.43)^{2}-(\frac{1}{2}(1050)(-13)^{2}+\frac{1}{2}(6320)(12)^{2} )=-28.18x10^{4}J

d) The change in kinetic energy where the two vehicles stopped in the collision is:

ΔK=k_{2}-k_{1}=0-(\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2} )

ΔK=-(\frac{1}{2}(1050)(-13)^{2}+\frac{1}{2}(6320)(2.15)^{2} )=-10.33x10^4J

You might be interested in
Where is the switch located on this diagram?
Fed [463]
For this case, the switch is located at point B of the diagram.
 Remember that point D is the universal symbol for resistance.
 In A what you have is a source of power and in C what you have is a cable.
 Therefore, the answer for this case is B.
6 0
3 years ago
POTENTIAL I KINETIC ENERGY
TEA [102]

7kinetic energy is decreasing in B

4 0
2 years ago
Write down two examples of where ramps are used
kumpel [21]
Airports use ramps to connect the plane to the airport and towing trucks use ramps to get the vehicles on the truck
6 0
3 years ago
Read 2 more answers
How can you find the reading of main scale and vernier scale​
anygoal [31]

Answer:

this pdf should help you out

Explanation:

Download pdf
7 0
2 years ago
A factory has a solid copper sphere that needs to be drawn into a wire. The mass of the copper sphere is 76.5 kg. The copper nee
baherus [9]

Answer:

120.125 m

Explanation:

Density = Mass/volume

D = m/v .............................. Equation 1.

Where D = Density of the solid copper sphere, m = mass of the solid copper sphere, v = volume of the solid copper sphere.

Making v the subject of the equation,

v = m/D............................... Equation 2

Given: m = 76.5 kg,

Constant: D = 8960 kg/m .

Substituting into equation 2

v = 76.5/8960

v = 0.0085379 m³

Since the copper sphere is to be drawn into wire,

Volume of the copper sphere = volume of the wire

v = volume of the wire

Volume of wire = πd²L/4

Where d = diameter of the wire, L = length of the wire.

Note: A wire takes the shape of a cylinder.

v = πd²L/4 ........................ equation 3.

making L the subject of the equation,

L = 4v/πd²..................... Equation 4

Given: v = 0.0085379 m³, d = 9.50 mm = 0.0095  and π = 3.14

Substitute into equation 4

L = 4×0.0085379/(3.15×0.0095²)

L = 0.0341516/0.0002843

L = 120.125 m.

L = 120.125 m

Thus the length of the wire produced = 120.125 m

4 0
3 years ago
Other questions:
  • It has been argued that power plants should make use of off-peak hours to generate mechanical energy and store it until it is ne
    11·1 answer
  • You perform an experiment in which you measure the distance traveled by a projectile fired with different initial velocities. Wh
    11·2 answers
  • What is amorphous material
    10·1 answer
  • How does exercise help you body devolpe
    7·1 answer
  • ¿que es el calor latente
    5·1 answer
  • An object with an initial velocity of 27 m/s has a final velocity of 39 m/s after 13 seconds.
    6·1 answer
  • Real life scenario where an object has constant velocity but changes mass
    8·1 answer
  • A force of 6.0 N gives a 2.0 kg block an acceleration of 3.0
    15·1 answer
  • If positive work is being done to an object...
    14·1 answer
  • The gravitational force of attraction between two masses is F
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!