1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
3 years ago
9

A 1050 kg sports car is moving westbound at 13.0 m/s on a level road when it collides with a 6320 kg truck driving east on the s

ame road at 12.0 m/s. The two vehicles remain locked together after the collision. What is the velocity (magnitude) of the two vehicles just after the collision?
At what speed should the truck have been moving so that it and car are both stopped in the collision?
Find the change in kinetic energy of the system of two vehicles for the situations of part A.
Find the change in kinetic energy of the system of two vehicles for the situations of part C.
Physics
1 answer:
Mila [183]3 years ago
6 0

Answer:

a) v_{3} =8.43 m/s

b) v_{2}=2.15m/s

c) ΔK=-28.18x10^4J

d)ΔK=-10.33x10^4J

Explanation:

From the exercise we know that there is a collision of a sports car and a truck.

So, the sport car is going to be our object number 1 and the truck object number 2.

m_{1}=1050kg\\v_{1}=-13m/s\\m_{2}=6320kg\\v_{2}=12m/s

Since the two vehicles remain locked together after the collision the final mass is:

m_{3}=7370kg

a) To find the velocity of the two vehicles just after the collision we must use linear's momentum principle

p_{1}=p_{2}

m_{1}v_{1}+ m_{2}v_{2}=m_{3}v_{3}

v_{3}=\frac{m_{1}v_{1}+m_{2}v_{2}}{m_{3}}=\frac{(1050kg)(-13m/s)+(6320kg)(12m/s)}{7370kg}

v_{3}=8.43m/s

b) To find the speed the truck should have had so both vehicles stopped in the collision we need to use the same principle used before

m_{1}v_{1}+ m_{2}v_{2}=0

v_{2}=\frac{-m_{1}v_{1}}{m_{2} }=\frac{-(1050kg)(-13m/s)}{(6320kg)}=2.15m/s

c) To find the change in kinetic energy we need to do the following steps:

ΔK=k_{2}-k_{1}=\frac{1}{2}m_{3}v_{3}^{2}-(\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2} )

ΔK=\frac{1}{2}(7370)(8.43)^{2}-(\frac{1}{2}(1050)(-13)^{2}+\frac{1}{2}(6320)(12)^{2} )=-28.18x10^{4}J

d) The change in kinetic energy where the two vehicles stopped in the collision is:

ΔK=k_{2}-k_{1}=0-(\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2} )

ΔK=-(\frac{1}{2}(1050)(-13)^{2}+\frac{1}{2}(6320)(2.15)^{2} )=-10.33x10^4J

You might be interested in
Can anyone help me? (physics)
Masja [62]

Answer:

The initial velocity of the golf is 15.7 m/s.

The direction of the golf is 57°.

Explanation:

The following data were obtained from the question:

Time of flight (T) = 2.7 secs

Range (R) = 23 m

Acceleration due to gravity (g) = 9.8 m/s²

Initial velocity (u) =.?

Direction (θ) =.?

T = 2U Sine θ /g

2.7 = 2 × U × Sine θ /9.8

Cross multiply

2.7 × 9.8 = 2 × U × Sine θ

26.46 = 2 × U × Sine θ

Divide both side by 2 × Sine θ

U = 26.46 /2 Sine θ

U = 13.23 / Sine θ ... (1)

R = U² Sine 2θ /g

23 = U² Sine 2θ / 9.8

U = 13.23 / Sine θ

23 = (13.23/ Sine θ)² Sine 2θ / 9.8

23 = (175.0329 / Sine² θ) × Sine 2θ / 9.8

23 = 17.8605/Sine² θ × Sine 2θ

Recall:

Sine 2θ = 2SineθCosθ

23 = 17.8605/ Sine² θ × 2SineθCosθ

23 = 17.8605/ Sine θ × 2Cosθ

23 = 35.721 Cos θ /Sine θ

Cross multiply

23 × Sine θ = 35.721 Cos θ

Divide both side by 23

Sine θ = 35.721 Cos θ /23

Sine θ = 1.5531 × Cos θ

Divide both side by Cos θ

Sine θ /Cos θ = 1.5531

Recall:

Sine θ /Cos θ = Tan θ

Sine θ /Cos θ = 1.5531

Tan θ = 1.5531

Take the inverse of Tan

θ = Tan¯¹ (1.5531)

θ = 57°

Therefore, the direction of the golf is 57°

Thus, the initial velocity can be obtained as follow:

U = 13.23 / Sine θ

θ = 57°

U = 13.23 / Sine 57

U = 13.23/0.8387

U = 15.7 m/s

Therefore, the initial velocity of the golf is 15.7 m/s

8 0
3 years ago
An electric field of 1.32 kV/m and a magnetic field of 0.516 T act on a moving electron to produce no net force. If the fields a
Lapatulllka [165]

Answer:

The speed of the electron is 2.55\times 10^3\ m/s.

Explanation:

Given that,

The magnitude of electric field, E=1.32\ kV/m=1.32\times 10^3\ V/m

The magnitude of magnetic field, B = 0.516 T

Both the magnetic and electric fields are acting on the moving electron. Then,  the magnitude of electric field and magnetic field is balanced such that :

evB=eE\\\\v=\dfrac{E}{B}\\\\v=\dfrac{1.32\times 10^3}{0.516}\\\\v=2558.13\ m/s

or

v=2.55\times 10^3\ m/s

So, the speed of the electron is 2.55\times 10^3\ m/s. Hence, this is the required solution.

3 0
3 years ago
In a nuclear power plant, _____. energy is released from the nuclei of atoms energy is released from the bonds of molecules ener
oksian1 [2.3K]
In a nuclear power plant, energy is released from the nuclei of atoms. The correct option among all the options given in the question is the first option. Huge amount of thermal energy is released by the breaking of the uranium atoms. This energy is used for turning a turbine that produces electricity. It is a very clean method of producing electricity. 
8 0
3 years ago
Read 2 more answers
At 15°C air is transmitted <br>at 340 m/s. Express this speed<br>in Kilometers per hour.​
EleoNora [17]

Answer:

1224km/hr

Explanation:

To convert from m/s to km/hr

1000m = 1km

Divide both sides by 1000

1m = 1/1000 km................. (1)

60×60 seconds = 1 hr

3600s = 1hr

Divide both sides by 3600

1s = 1/3600 .............(2)

Divide (2) by (1)

1m/s =  1/1000 ÷ 1/3600 km/hr

1m/s = 1/1000 × 3600/1  km/hr

1m/s = 3600/1000  km/hr

1m/s = 3.6 km/hr .............(3)

To convert 340m/s to km/hr

Multiply (3) by 340

1× 340m/s = 3.6 × 340 km/hr

340m/s = 1224km/hr

I hope this was helpful, please mark as brainliest

7 0
3 years ago
Read 2 more answers
Consider the circuit below, which is powered by a 8-v battery. switch s is opened at t = 0 after having been closed for a long t
GrogVix [38]
The battery will be full still a 8v bc of no time comparison
4 0
3 years ago
Other questions:
  • E fundamental frequency of an open organ pipe corresponds to the middle c (261.6 hz on the chromatic musical scale). the third r
    15·1 answer
  • Help with this. <br><br><br><br><br><br> ....
    15·1 answer
  • Determine the weight of an average physical science textbook whose mass is 3.1 kilograms. The acceleration due to gravity is 9.8
    10·1 answer
  • A floor polisher has a rotating disk that has a 14-cm radius. The disk rotates at a constant angular velocity of 1.3 rev/s and i
    15·2 answers
  • A planet has a period of revolution about the sun equal to T and a mean distance from the sun equal to R. T2 varies directly as
    9·1 answer
  • Why does the midi system have the widest range of frequencies
    5·2 answers
  • Of all of the types of forest biomes, tropical rain forests contain the most biodiversity, even though they do not have the most
    6·2 answers
  • 1:
    5·1 answer
  • How can we find velocity?*
    14·1 answer
  • Which of the following statements best describes the movement of particles in a liquid?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!