Answer: Option (c) is the correct answer.
Explanation:
When a system is open then there will be exchange of energy between the system and surrounding.
Whereas when a system is closed then there will be no exchange of energy, that is, thermal energy will not flow into the atmosphere.
Thus, we can conclude that a sealed calorimeter is a closed system because thermal energy is not transferred to the environment.
No of moles = given mass ÷ molecular mass
n = 55.98 ÷ (12+19×2+35.5×2)
Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
A calcium atom has 20 protons!
There you go! I really hope this helped, if there’s anything just let me know! ☻
Answer:
IR spectroscopy can be used to identify chemical structures are present in compounds.
Explanation:
Infrared spectroscopy is a technique in organic chemistry that can be use use to identify chemical structures present in compounds because it is base on the ability of different functional groups to adsorb infrared light.
This work by shinning the infrared lights into the organic compounds to be identified, some of the frequencies of the infrared lights are adsorbed by the compounds and its identify groups of atoms and molecules in the compound.