There was an increase in kinetic energy during the segment C and in other segments
Recall: That temperature is a measure of the average kinetic energy, so increasing temperature all cause increasing kinetic energy and vice versa.
However too, the heat energy which is added during the phase change is usually used to overcome forces in order to hold the molecules together.
<h3>What is kinetic energy?</h3>
Kinetic energy is the type of energy an object or a body posesss due to it motion
The body usually maintains it's kinetic energy unless the speed changes
<h3>What it potential energy?</h3>
Potential energy is a type of energy an object or a body had due to its relative position.
Learn more about kinetic and potential energy:
brainly.com/question/13584911f
An oxygen gas is a diatomic molecule which means that each molecule is composed of 2 atoms. Its symbol is O2.
Each oxygen atom has a molar mass of 16 g/mol. The molar mass of oxygen gas is calculated below,
molar mass = 2 x (16 g/mol) = 32 g/mol
To determine the number of moles in 52.5 grams of oxygen, divide the given mass by the calculated molar mass.
n = 52.5 grams / (32 gram/ mol)
n = 1.64 moles
Thus, there are 1.64 moles of oxygen gas.
Answer:
- <em><u>Step 2 (the slow step).</u></em>
Explanation:
The rate-determining step is always the slow step of a mechanism.
That is so, because it is the slow step which limits the reaction.
Imaging that for assembling a toy you have process of three steps:
- 1. order ten pieces, which you can do in 1 minute: meaning that you can order order the pieces for 60/1 = 60 toys in 1 hour.
- 2. glue the pieces and hold the toy until the glue hardens, which takes 1 hour: meaning finishingh 1 toy in 1 hour.
- 3. pack the toy, which takes 2 minutes: meaning that you can pack 60/2 = 30 toys in one hour.
The time to glue and hold one toy until the glue hardens determines that you can assemble 1 toy in 1 hour and not 60 toys or 30 toys.
Thus, the step that determines the rate at which the reaction happens is the slowest step: step 2.
On the periodic table it is the number on the bottom of the element.
<span>If you know the amount of neutrons you can add it to the number of protons to find the atomic mass NUMBER, which is a good approximate of the atomic mass. </span>