Answer:
The time taken by missile's clock is 
Solution:
As per the question:
Speed of the missile, 
Now,
If 'T' be the time of the frame at rest then the dilated time as per the question is given as:
T' = T + 1
Now, using the time dilation eqn:




(1)
Using binomial theorem in the above eqn:
We know that:

Thus eqn (1) becomes:


Now, putting appropriate values in the above eqn:


Answer:
A closed system.
Explanation:
The three major types of system are: open, closed and isolated. Open system interacts with its surroundings with respect to its particles and energy. A closed system interacts with its surroundings with respect to energy but not its particles. While an isolated system does not interact with its surroundings in any way.
Therefore, after the jar is sealed, it is an example of a closed system. This is because the emitted gas could not escape into the surroundings, but thermal energy was emitted into its surroundings after the chemical reaction has taken place.
Mass of the displaced material. In water it would be the mass of the water that the volume of the ball displaces.
For the sound wave passing through regions of the ocean with varying density, longer wavelengths correspond to greater density of the water.
<h3>What is effect of density of a medium on wavelength of a wave?</h3>
The density of a medium is directly proportional to the wavelength of a wave.
The higher the density of the medium, the longer the wavelength of a wave.
Therefore, for a sound wave passing through regions of the ocean with varying density, longer wavelengths correspond to greater density of the water.
Learn more about density and wavelength at: brainly.com/question/9486264
#SPJ1
Answer:
24.57 revolutions
Explanation:
(a) If they do not slip on the pavement, then the angular acceleration is

(b) We can use the following equation of motion to find out the angle traveled by the wheel before coming to rest:

where v = 0 m/s is the final angular velocity of the wheel when it stops,
= 95rad/s is the initial angular velocity of the wheel,
is the deceleration of the wheel, and
is the angle swept in rad, which we care looking for:



As each revolution equals to 2π, the total revolution it makes before stop is
154.375 / 2π = 24.57 revolutions