Answer:

Explanation:
Hello!
In this case, since the sulfuric acid and sodium hydroxide react in a 1:2 mole ratio, given the reaction, we realize they have the following mole ratio at the equivalence point:

Which in terms of concentrations and volumes is:

Thus, we can plug in the volume and concentration of acid to find the moles of base:

Best regards!
The random mixing of gas molecules is called A.)Diffusion
Answer:
801 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of Ba₃(PO₄)₂ = 1.33 moles
Mass of Ba₃(PO₄)₂ =?
Next, we shall determine the molar mass of Ba₃(PO₄)₂. This can be obtained as follow:
Molar mass of Ba₃(PO₄)₂ = (137.3×3) + 2[31 + (4×16)]
= 411.9 + 2[31 + 64]
= 411.9 + 2[95]
= 411.9 + 190
Molar mass of Ba₃(PO₄)₂ = 601.9 g/mol
Finally, we shall determine the mass of Ba₃(PO₄)₂. This can be obtained as follow:
Number of mole of Ba₃(PO₄)₂ = 1.33 moles
Molar mass of Ba₃(PO₄)₂ = 601.9 g/mol
Mass of Ba₃(PO₄)₂ =?
Mole = mass /Molar mass
1.33 = Mass of Ba₃(PO₄)₂ / 601.9
Cross multiply
Mass of Ba₃(PO₄)₂ = 1.33 × 601.9
Mass of Ba₃(PO₄)₂ = 801 g
Answer:
The equilibrium will change in the direction of the reactants
Explanation:
Answer:
C. II, III, IV, and V.
Explanation:
Acid buffer is generally formed by the combination of a weak acid as well as the salt of the conjugate base.
Basic buffer is formed the combination of a weak base and also the salt of the conjugate acid.
On dilution the ration of the concentration terms of the salt and weak acid/base does not change. Hence the pH of the buffer solution does not change.
When acid or base is added to buffer, it resists changes in the pH.
Therefore, option (C) is correct.