Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
Answer:
24
Explanation:
The number of protons in the atom of the neutral element will also be 24.
Protons are the positively charged particles in an atom.
Electrons are the negatively charged particles
Neutrons do not carry any charges at all
Now, in a neutral atom, the charge is balanced and the number of protons and electrons are the same in the atom.
So, since we have been given that the atom has 24 electrons, the number of protons will be 24.
Answer:
75.15 mol.
Explanation:
- Firstly, we need to write the balanced equation of the reaction:
<em>Fe₂O₃ + 3CO → 2Fe + 3CO₂.</em>
It is clear that 1.0 mole of Fe₂O₃ reacts with 3.0 moles of CO to produce 2.0 moles of Fe and 3.0 moles of CO₂.
∴ Fe₂O₃ reacts with CO with (1: 3) molar ratio.
- we need to calculate the no. of moles of (4000 g) of Fe₂O₃:
<em>no. of moles of Fe₂O₃ = mass/molar mass</em> = (4000 g)/(159.69 g/mol) = <em>25.05 mol.</em>
<u>Using cross multiplication:</u>
1.0 mole of Fe₂O₃ needs → 3.0 moles of CO,
∴ 25.05 mole of Fe₂O₃ needs → ??? moles of CO.
<em>∴ The no. of moles of CO needed</em> = (3.0 mol)(25.05 mol)/(1.0 mol) =<em> 75.15 mol.</em>
Answer:
A
Explanation:
Element A has 3 electrons in outermost shell so its valency is 3. It will loose 3 electrons to attain stability, as loss of 3 electrons is easier than gain of 5 electrons.
Valency of B is −2 as it will gain 2 electrons to attain stability and combine with other atom.
Valency of A⟶+3
Valency of B⟶−2
(Refer to Image)
Cross multiply valency of A and B
∴A2B3 compound will be formed.