Answer:- ![Ka=9*10^-^5](https://tex.z-dn.net/?f=Ka%3D9%2A10%5E-%5E5)
Solution:- percent ionization = ![(\frac{x}{c})100](https://tex.z-dn.net/?f=%28%5Cfrac%7Bx%7D%7Bc%7D%29100)
where,
is the equilibrium concentration of product ion and c is the initial concentration of the acid.
Let's plug in the values in the formula:
![3.0=(\frac{x}{0.10})100](https://tex.z-dn.net/?f=3.0%3D%28%5Cfrac%7Bx%7D%7B0.10%7D%29100)
![x=\frac{3.0*0.10}{100}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B3.0%2A0.10%7D%7B100%7D)
![x=0.003](https://tex.z-dn.net/?f=x%3D0.003)
In general, the acid is represented as HA, the ice table is shown as:
![HA(aq) \leftrightharpoons H^+(aq) +A^-(aq)](https://tex.z-dn.net/?f=HA%28aq%29%20%20%20%20%20%20%5Cleftrightharpoons%20H%5E%2B%28aq%29%20%20%20%2BA%5E-%28aq%29)
I 0.10 0 0
C -X +X +X
E (0.10 - X) X X
where X is the change in concentration that we already have find out using percentage ionization formula.
![Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Let's plug in the values in it:
![Ka=\frac{(0.003)^2}{(0.1-0.003)}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%280.003%29%5E2%7D%7B%280.1-0.003%29%7D)
0.003 is almost negligible as compared to 0.10, so (0.10 - 0.003) could be taken as 0.10.
![Ka=\frac{(0.003)^2}{(0.01)}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%280.003%29%5E2%7D%7B%280.01%29%7D)
![Ka=9*10^-^5](https://tex.z-dn.net/?f=Ka%3D9%2A10%5E-%5E5)
Second choice is the right one.