Answer:
There are 0.5 mole in 20g of argon.
Explanation:
40 g of argon = 1mole
Then 20g of argon is,
→ 1/40 × 20
→ 0.5 mole
Answer:
Explanation:
lithium: lithium is very soft, silvery metal. melting point is 180.54°C and boiling point is 1,335°C. it's density is 0.534 grams per cu.cm. oxygen: oxygen is colourless , odorless , tasteless gas
Answer:
(a) oxygen
(b) 154g (to 3sf)
(c) 79.9% (to 3sf)
Explanation:
mass (g) = moles × Mr/Ar
note: eqn means chemical equation
(a)
moles of P = 84.1 ÷ 30.973 = 2.7152 moles
moles of O2 = 85÷2(16) = 2.65625 moles
Assuming all the moles of P is used up,
moles of O2 / moles of phosphorus = 5/4 (according to balanced chemical eqn)
moles of O2 required = 5/4 × 2.7152moles = 3.394 moles (more than supplied which is 2.65625moles)
therefore there is insufficient moles of O2 and the limiting reactant is oxygen.
(b)
moles of P2O5 produced
= 2/5 (according to eqn) × 2.7152
= 1.08608moles
mass of P2O5 produced
= 1.08608 × [ 2(30.973) + 5(16) ]
= 154.164g
= approx. 154g to 3 sig. fig.
(c)
% yield = actual/theoretical yield × 100%
= 123/154 × 100%
= 79.870%
= approx. 79.9% (to 3sf)
A) in pure water :
by using ICE table:
According to the reaction equation:
BaCrO4(s) → Ba^2+(aq) + CrO4^2-(aq)
initial 0 0
change +X +X
Equ X X
when Ksp = [Ba^2+][CrO4^2-]
by substitution:
2.1 x 10^-10 = X* X
∴X = √2.1 x 10*-10
∴X = 1.4 x 10^-5
∴ the solubility = X = 1.4 X 10^-5
B) In 1.6 x 10^-3 m Na2CrO4
by using ICE table:
According to the reaction equation:
BaCrO4(s) → Ba^2+(aq) + CrO4^2-(aq)
initial 0 0.0016
Change +X +X
Equ X X+0.0016
when Ksp = [Ba^2+][CrO4^2-]
by substitution:
2.1 x 10^-10 = X*(X+0.0016) by solving for X
∴ X = 1.3 x 10^-7
∴ solubility =X = 1.3 x 10^-7
It is called permafrost :)