Answer:
Option B. 5 nC
Explanation:
From the question given above, the following data were obtained:
Capicitance (C) = 100 pF
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Next, we shall convert 100 pF to Farad (F). This can be obtained as follow:
1 pF = 1×10¯¹² F
Therefore,
100 pF = 100 pF × 1×10¯¹² F / 1 pF
100 pF = 1×10¯¹⁰ F
Next, we shall determine the quantity of charge. This can be obtained as follow:
Capicitance (C) = 1×10¯¹⁰ F
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Q = CV
Q = 1×10¯¹⁰ × 50
Q = 5×10¯⁹ C
Finally, we shall convert 5×10¯⁹ C to nano coulomb (nC). This can be obtained as follow:
1 C = 1×10⁹ nC
Therefore,
5×10¯⁹ C = 5×10¯⁹ C × 1×10⁹ nC / 1 C
5×10¯⁹ C = 5 nC
Thus, the quantity of charge is 5 nC
<span>A skier wears polarized glasses instead of glasses that are used for reading because p</span><span>olarized glasses decrease reflected glare compared to regular glasses. (D)
Hope this answers your question correctly.</span>
Answer:comparing the total displacement and tota distance covered by Ben Jerry.
Explanation:
Total distance travelled by both is;
m+n=z
Total displacement of both is;
x+y=z
Therefore;
comparing equation 1 and 2;
x+y=m+n
Answer:
20.96 m/s
Explanation:
Using the equations of motion
y = uᵧt + gt²/2
Since the puck slides off horizontally,
uᵧ = vertical component of the initial velocity of the puck = 0 m/s
y = vertical height of the platform = 2 m
g = 9.8 m/s²
t = time of flight of the puck = ?
2 = (0)(t) + 9.8 t²/2
4.9t² = 2
t = 0.639 s
For the horizontal component of the motion
x = uₓt + gt²/2
x = horizontal distance covered by the puck
uₓ = horizontal component of the initial velocity = 20 m/s
g = 0 m/s² as there's no acceleration component in the x-direction
t = 0.639 s
x = (20 × 0.639) + (0 × 0.639²/2) = 12.78 m
For the final velocity, we'll calculate the horizontal and vertical components
vₓ² = uₓ² + 2gx
g = 0 m/s²
vₓ = uₓ = 20 m/s
Vertical component
vᵧ² = uᵧ² + 2gy
vᵧ² = 0 + 2×9.8×2
vᵧ = 6.26 m/s
vₓ = 20 m/s, vᵧ = 6.26 m/s
Magnitude of the velocity = √(20² + 6.26²) = 20.96 m/s