Answer:
In a compound, chemical energy is _____required__________ when bonds break.
Answer:
5.8μg
Explanation:
According to the rate or decay law:
N/N₀ = exp(-λt)------------------------------- (1)
Where N = Current quantity, μg
N₀ = Original quantity, μg
λ= Decay constant day⁻¹
t = time in days
Since the half life is 4.5 days, we can calculate the λ from (1) by substituting N/N₀ = 0.5
0.5 = exp (-4.5λ)
ln 0.5 = -4.5λ
-0.6931 = -4.5λ
λ = -0.6931 /-4.5
=0.1540 day⁻¹
Substituting into (1) we have :
N/N₀ = exp(-0.154t)----------------------------- (2)
To receive 5.0 μg of the nuclide with a delivery time of 24 hours or 1 day:
N = 5.0 μg
N₀ = Unknown
t = 1 day
Substituting into (2) we have
[5/N₀] = exp (-0.154 x 1)
5/N₀ = 0.8572
N₀ = 5/0.8572
= 5.8329μg
≈ 5.8μg
The Chemist must order 5.8μg of 47-CaCO3
Charles Law is the law that states pressure and temperature are directly proportional at constant volume and miles
Hello.
<span>It makes a longitudinal wave because it stretches and compresses while as it slithers foward.
</span>
Have a nice day
PH scale is used to determine how acidic or basic a solution is.
we have been given the hydrogen ion concentration. Using this we can calculate pH,
pH = - log[H⁺]
pH = - log (1 x 10⁻¹ M)
pH = 1
using pH can calculate pOH
pH + pOH = 14
pOH = 14 - 1
pOH = 13
using pOH we can calculate the hydroxide ion concentration
pOH = - log [OH⁻]
[OH⁻] = antilog(-pOH)
[OH⁻] = 10⁻¹³ M
hydroxide ion concentration is 10⁻¹³ M