Answer:
1.6g/mL
Explanation:
Density equation is D=m/v
Density = g/mL
m=mass of sample in grams
v = volume of sample in mL
The volume of a square can be calculated by V=l*w*h.
In this case it is 5cm*5cm*5cm = 125cm^3
Since we know that 1cm^3 ~ 1mL we can convert the volume to mL as so:
125cm^3 (1mL/(1cm^3)) = 125mL
Then simply plug into the density equation:
D=200g/125mL = 1.6g/mL
The elements in Groups 1A(1) and 7A(17) are all quite reactive.
<h3>Major difference between Groups 1A(1) and 7A(17) : </h3>
Group 7's halogens, which are non-metal elements, become less reactive as you move down the group. In contrast to the alkali metals in Group 1 of the periodic table, this trend is the opposite. The most reactive element in Group 7 is fluorine.
Alkali metals are soft and reactive metals. They react vigorously with water and become more reactive. And other hand halogens are reactive non metals.
- Elements of group 1A are known as alkali metals. Elements of this group are lithium, sodium, potassium, rubidium, cesium.
- Reactivity increase down group 1 but decrease up group 7 this is because group 7 elements react by gaining an electron. As one move down the group, the amount of electron shielding increases, meaning that the electron is less attracted to the nucleus.
To know more about Groups 1A(1) and 7A(17) please click here :
brainly.com/question/13063502
#SPJ4
Answer:
Industrialization has historically led to urbanization by creating economic growth and job opportunities that draw people to cities. Urbanization typically begins when a factory or multiple factories are established within a region, thus creating a high demand for factory labor.
Answer:
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Explanation:
The HI donates a proton to the water, converting it to a hydronium ion
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Thus, the HI is behaving like a Brønsted acid.