Answer:
The correct answer is B) it helps to ensure the result are consistent and repeatable.
Explanation:
Scientist generally repeat an experiment if he or she did not make a mistake in the first one to compare the results of two experiment, if there is no difference in the result or values obtainted from the observation of two experiment. he or she become sure that experiment was done in a right way because if there is some error made when experiment was carried out then the result of two same experiment would be different.
Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Number of moles = mass of Ni /molecular mass of Ni
mass of nickel = 86.4 g
molecular mass of nickel = 58.69
number of moles of Ni in 86.4 g
=86.4/58.69
=1.472 mol
(rounded to four significant figures instead of three because the first digit of the answer starts with a 1).
<h3>As fluorine sits atop chlorine in the periodic table, most people expect it to have the highest electron affinity, but this is not the case. ... Therefore, chlorine has a higher electron affinity than fluorine, and this orbital structure causes it to have the highest electron affinity of all of the elements.</h3>