Answer:
The least whole number coefficient for HNO₃ is 6
Explanation:
The chemical equation above is the reaction between calcium orthophosphate and nitric acid.
To balance a chemical equation, we have to consider law of conservation of matter which states that matter can neither be created nor destroyed.
What this law implies is that, whatever we have at the reactant side must be equal to whatever is obtainable at the product side.
The above equation is
Ca₃(PO₄)₂ + HNO₃ → Ca(NO₃)₂ + H₃PO₄
To balance the equation, we'll have to check the number of atoms at each side and possibly balance the equation with the number of moles.
The balanced equation is
Ca₃(PO₄)₂ + 6HNO₃ → 3Ca(NO₃)₂ + 2H₃PO₄
From the balanced equation above, we can see that the number of calcium (Ca), Phosphorus (P), Oxygen(O), Nitrogen(N) and hydrogen (H) are balanced at both sides of the equation.
The least number coefficient for HNO₃ is 6
I believe the answer is A (it was on another Brainly question as well).
Answer: There are 7 alpha-particle emissions and 4 beta-particle emissions involved in this series
Explanation:
Alpha Decay: In this process, a heavier nuclei decays into lighter nuclei by releasing alpha particle. The mass number is reduced by 4 units and atomic number is reduced by 2 units.
Beta Decay : It is a type of decay process, in which a proton gets converted to neutron and an electron. This is also known as -decay. In this the mass number remains same but the atomic number is increased by 1.
In radioactive decay the sum of atomic number or mass number of reactants must be equal to the sum of atomic number or mass number of products .

Thus for mass number : 235 = 207+4X
4X= 28
X = 7
Thus for atomic number : 92 = 82+2X-Y
2X- Y = 10
2(7) - Y= 10
14-10 = Y
Y= 4

Thus there are 7 alpha-particle emissions and 4 beta-particle emissions involved in this series
Answer:
Hello There!!
Explanation:
I believe the answer is nuclear.
hope this helps,have a great day!!
~Pinky~
Tin metal reacts with hydrogen fluoride to produce tin(II) fluoride and hydrogen gas according to the following balanced equation.
Sn(s)+2HF(g)→SnF2(s)+H2(g)
Sn(s)+2HF(g)→
SnF
2
(s)+
H
2
(g)
How many moles of hydrogen fluoride are required to react completely with 75.0 g of tin?
Step 1: List the known quantities and plan the problem.
Known
given: 75.0 g Sn
molar mass of Sn = 118.69 g/mol
1 mol Sn = 2 mol HF (mole ratio)
Unknown
mol HF
Use the molar mass of Sn to convert the grams of Sn to moles. Then use the mole ratio to convert from mol Sn to mol HF. This will be done in a single two-step calculation.
g Sn → mol Sn → mol HF
Step 2: Solve.
75.0 g Sn×1 mol Sn118.69 g Sn×2 mol HF1 mol Sn=1.26 mol HF
75.0 g Sn×
1
mol Sn
118.69
g Sn
×
2
mol HF
1
mol Sn
=1.26 mol HF
Step 3: Think about your result.
The mass of tin is less than one mole, but the 1:2 ratio means that more than one mole of HF is required for the reaction. The answer has three significant figures because the given mass has three significant figures.