Through refraction , it bends as it passes into a solid object
Answer:
Identify the object to be analyzed. For some systems in equilibrium, it may be necessary to consider more than one object. Identify all forces acting on the object. Identify the questions you need to answer. Identify the information given in the problem. In realistic problems, some key information may be implicit in the situation rather than provided explicitly.
Explanation:
Identify the object to be analyzed. For some systems in equilibrium, it may be necessary to consider more than one object. Identify all forces acting on the object. Identify the questions you need to answer. Identify the information given in the problem. In realistic problems, some key information may be implicit in the situation rather than provided explicitly.
Answer:
V4=9.197v
Explanation:
Given:
V1= 18v ,V2= 12v ,r1=r5=58ohms ,r2=r6=124ohms , r3=47ohms ,r4= 125ohms
V4= I4R4 = V2/(R4 + R5)×R4
V4= 12×125 /(125 + 58)
V4=1500/183 =9.197v
There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?
Answer:
The net friction force is 8.01 N
Explanation:
Net friction force = mass of hockey puck × acceleration
From the equations of motion
v^2 = u^2 + 2as
v = 40 m/s
u = 0 m/s (puck was initially at rest)
s = 30 m
40^2 = 0^2 + 2×a×30
60a = 1600
a = 1600/60 = 26.7 m/s^2
The acceleration of the puck is 26.7 m/s^2
Net friction force = 0.3 × 26.7 = 8.01 N