Answer: C) 200 N
Explanation:
The force
is defined as:

Where:
is the mass of the object
is the acceleration
Then:

Finally:

Hence, the correct option is C.
From reliable sources in the internet, the half-live of carbon-14 is given to be 5,730 years. In a span of 10,000 to 12,000 years, there are almost or little more than 2 half-lives. Thus, there should be
A(t) = A(0)(1/2)^t
where t is the number of half-lives, in this case 2. Thus, only about 1/4 of the original amount will be left.
Answer:
greater acceleration is experienced by the car with lower mass
Explanation:
Since both the toys are connected by same spring so the force due to spring on both the toys will be same and it is given as

now we know by Newton's II law

so here we have

here we have same force on both the blocks
so acceleration will be more if mass is less
so greater acceleration is experienced by the car with lower mass
First we need to know the equation:
F= Mass times acceleration
F = 2.0 kg times 5.0 m/s^2
multiply them to get the net force!
F= 10 N
N is newton
Hope this heps
Answer:
82.25 moles of He
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 10 L
Mass of He = 0.329 Kg
Temperature (T) = 28.0 °C
Molar mass of He = 4 g/mol
Mole of He =?
Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:
1 Kg = 1000 g
Therefore,
0.329 Kg = 0.329 Kg × 1000 g / 1 Kg
0.329 Kg = 329 g
Thus, 0.329 Kg is equivalent to 329 g.
Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:
Mass of He = 329 g
Molar mass of He = 4 g/mol
Mole of He =?
Mole = mass / molar mass
Mole of He = 329 / 4
Mole of He = 82.25 moles
Therefore, there are 82.25 moles of He in the tank.