We are given the base dissociation constant, Kb, for Pyridine (C5H5N) which is 1.4x10^-9. The acid dissociation constant, Ka for the Pyridium ion or the conjugate acid of Pyridine is to be determined. We know from our chemistry classes that:
Kw = Kb * Ka
where Kw is always equal to 1x10^-14
so, to solve for Ka of Pyridium ion, substitute Kb to the equation together with Kw and solve for Ka:
1x10^-14 = 1.4x10^-9 * Ka
solve for Ka
Ka = 7.14x10^-6
Therefore, the acid dissociation constant of Pyridinium ion is 7.14x10^-6.
<span />
Oxidation state of I is (-1) and for CO it is zero. Let's assume that the oxidation state of Fe in Fe(CO)₄I₂<span> (s) is x. For whole compound, the charge is zero.
Sum of oxidation numbers in all elements = Charge of the compound.
Here we have 1Fe , 4CO and 2I
hence we can find the oxidation state as;
x + 4*0 + 2*(-1) = 0
x + 0 - 2 = 0
x = +2
Hence the oxidation state of Fe in product </span>Fe(CO)₄I₂ (s) is +2.
Same as we can find the oxidation state (y) of Fe in Fe(CO)₅(s).
y + 5*0 = 0
y = 0
Since oxidation state of Fe increased from 0 to +2, the oxidized element is Fe in the given reaction.
Answer:
Explanation:
A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.
Based on the question, the only <u>tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain</u> is
2-hydroxy-2,3-dimethylbutane
H OH H H
| | | |
H - C - C - C - C - H
| | | |
H CH₃ CH₃ H
From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain
Answer:
Carbon dioxide is a linear covalent molecule.
Carbon dioxide is an acidic oxide and reacts with water to give carbonic acid.
CO 2 + H2O ==> H2CO3
Carbon dioxide reacts with alkalis to give carbonates and bicarbonates.
CO 2 + NaOH ==> NaHCO3 (Sodium BiCarbonate )
NaHCO3 + NaOH ==> Na2CO3 (Sodium Carbonate) + H2O