Answer:
HNO₂
Explanation:
An acid is a proton donor; a base is a proton acceptor.
Thus, NO₂⁻ is the base, because it accepts a proton from the water.
H₂O is the acid, because it donates a proton to the nitrite ion.
The conjugate base is what's left after the acid has given up its proton.
The conjugate acid is what's formed when the base has accepted a proton.
NO₂⁻/HNO₂ make one conjugate acid/base pair, and H₂O/OH⁻ are the other conjugate acid/base pair.
NO₂⁻ + H₂O ⇌ HNO₂ + OH⁻
base acid conj. conj.
acid base
Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7
Answer:
Two electrons fit in the first shell out from the nucleus and eight fit in the second. Every element with more protons than the two of Helium needs to work on shells outside the first one. one you get to ten, you have filled the first two shells.
In a water molecule, oxygen forms one covalent bond with EACH of TWO hydrogen atoms. As a result, the oxygen atom has a stable arrangement of 8 valence electrons. Each hydrogen atom forms only one bond because it needs only two electrons to be stable.
pV = nRT
p = nRT/V
p= 1 x 0.08205 x 1000/ 2
p = 41.025 Pa
Edit: The unit should be atm instead of Pa, as pointed out by a nice human being.
Answer:
403 mL
Explanation:
First, I will assume that the mole is 1, because you are not specifing this.
Now, with the innitial data, we need to get the pressure:
T = 65+273 = 338 K
V = 500 / 1000 = 0.5 L
Now if:
PV = nRT
Then:
P = nRT/V and V = nRT/P
Let's calculate the P:
P = 1 * 0.082 * 338 / 0.5 = 55.432 atm
The standard temperature is 0° C or 273 K so, the volume is:
V = 1 * 0.082 * 273 / 55.432
V = 0.40384 L or simply 403.84 mL