Answer:
20.96 h
Explanation:
The perimeter of the track is 2*pi*r = 20pi miles
In 10 hours, car B would have moved 20miles. So, when Car A leaves from point X, car B is 20pi - 20 miles from point X counter-clockwise and car A.
From here, we can express the distance of A from X like this:
xa = 3t
And the distance of B would be:
xb = 20pi - 20 - 2t
The time t where they would passed each other and put 12 miles between them would be the one where xa - xb is equal to 12:
xa - xb = 12
3t - (20pi - 20 - 2t) = 12
5t = 20 pi - 8
t = (20pi - 8)/5 = 10.96 h
Remember to add this value to the 10 hours car B had already been racing:
t = 20.96h
A free-falling object is an object moving under the effect of gravitational forces alone
The correct option to select for the True or False question is False
The reason the above selected option is correct is as follows:
According to Newton's second law of motion, we have;
Force = Mass × Acceleration
The force of gravity is 
Where;

m = The mass of the object
∴ The force acting on an object in free fall,
= m × g
Therefore the acceleration of an object in free fall is the constant acceleration due to gravity, and it therefore, does not change with time
The correct option for the question, acceleration of a free-falling object in a frictionless environment increases as a function of time is <u>False</u>
<u></u>
Learn more about object in free fall here:
brainly.com/question/13712424
brainly.com/question/11698474
If the desk doesn't move, then it's not accelerating.
If it's not accelerating, then the net force on it is zero.
If the net force on it is zero, then any forces on it are balanced.
If there are only two forces on it and they're balanced, then they have equal strengths, and they point in opposite directions.
So the friction on the desk must be equal to your<em> 245N</em> .
At the same time, however, you get less detail or less precision in a chart or graph than you do in the table. Imagine the difference between a table of sales figures for a ten-year period and a line graph for that same data. You get a better sense of the overall trend in the graph but not the precise dollar amount.
<h2>
Option 3, 216 m is the correct answer.</h2>
Explanation:
We have initial velocity, u = 15 m/s
Time, t = 12 seconds
Final velocity, v = 21 m/s
We have equation of motion v = u + at
Substituting
21 = 15 + a x 12
a = 0.5 m/s²
Now we have equation of motion v² = u² + 2as
21² = 15² + 2 x 0.5 x s
s = 216 m
Displacement = 216 m
Option 3, 216 m is the correct answer.