Newton’s Thrid Law, which states that for every reaction there is an opposite reaction.
Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
Answer:
182 to 3 s.f
Explanation:
Workdone for an adiabatic process is given as
W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)
where γ = ratio of specific heats. For carbon dioxide, γ = 1.28
For an adiabatic process
P₁V₁ʸ = P₂V₂ʸ = K
K = P₁V₁ʸ
We need to calculate the P₁ using ideal gas equation
P₁V₁ = mRT₁
P₁ = (mRT₁/V₁)
m = 2.80 g = 0.0028 kg
R = 188.92 J/kg.K
T₁ = 27°C = 300 K
V₁ = 500 cm³ = 0.0005 m³
P₁ = (0.0028)(188.92)(300)/0.0005
P₁ = 317385.6 Pa
K = P₁V₁¹•²⁸ = (317385.6)(0.0005¹•²⁸) = 18.89
W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)
V₁ = 0.0005 m³
V₂ = 2.10 dm³ = 0.002 m³
1 - γ = 1 - 1.28 = - 0.28
W =
18.89 [(0.002)⁻⁰•²⁸ - (0.0005)⁻⁰•²⁸]/(-0.28)
W = -67.47 (5.698 - 8.4)
W = 182.3 = 182 to 3 s.f
As per Bernuolli's Theorem total energy per unit mass is given as

now from above equation




now by above equation


Part B)
Now energy per unit weight


