-- find the horizontal and vertical components of F1.
-- find the horizontal and vertical components of F2.
-- find the horizontal and vertical components of F3.
-- add up the 3 horizontal components; their sum is the horizontal component of the resultant.
-- add up the 3 vertical components; their sum is the vertical component of the resultant.
-- the magnitude of the resultant is the square root of (vertical component^2 + horizontal component^2)
-- the direction of the resultant is the angle whose tangent is (vertical component/horizontal component), starting from the positive x-direction.
well in my own words, i'd saw the the doppler effect is similar to light because sound has a speed, and light does too.
so my theory is if you go fast enough everything would just become black, or maybe white? idk its hard to explain
but what my point is, is taht the doppler effect works in the same way, like if a car is moving towards you the sound is being emitted from the car and being pushed by the speed of the car making it have a much higher pitch, when the car is going away however it drops to a lower pitch due the the sound waves being DRAGGED by the car.
there hoped this helped I guess
. In single particle problem whole mass is concentrated at a single point so it has a single displacement, single velocity and single acceleration. while, in rigid body mass is distributed
The answer is b i just did the test