1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
3 years ago
15

Train is traveling at an initial velocity of 68.325m/s. After 23.75 seconds it speeds up to a final velocity of 79.32m/s. What i

s the train's acceleration during this time
Physics
1 answer:
wariber [46]3 years ago
8 0
So,

We know that:
acceleration =  \frac{ final\ velocity\ -\ initial\ velocity}{time}

Plug in the values.
acceleration =  \frac{79.32 m/s^{2}\ -\ 68.325m/s^{2}}{23.75 secs}
acceleration =  \frac{10.995m/s^{2} }{23.75 secs}
acceleration = 0.4629 m/s^{2}
You might be interested in
The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is th
Darya [45]

Answer:

1.92 x 10⁻¹²J

Explanation:

The magnetic force from the magnetic field gives the circulating protons gives the particle the necessary centripetal acceleration to keep it orbiting round the circular path. And from Newton's second law of motion, the force(F) is equal to the product of the mass(m) of the proton and the centripetal acceleration(a). i.e

F = ma

Where;

a = \frac{v^2}{r}             [v = linear velocity, r = radius of circular path]

=> F = m\frac{v^2}{r}           ------------(i)

We also know that the magnitude of this magnetic force experienced by the moving charge (proton) in a magnetic field is given by;

F = q v B sin θ       ----------(ii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = the angle between the velocity and the magnetic field.

Combining equations (i) and (ii) gives

m\frac{v^2}{r} = q v B sin θ           [θ = 90° since the proton is orbiting at the maximum orbital radius]

=> m\frac{v^2}{r} = q v B sin 90°

=> m\frac{v^2}{r} = q v B

Divide both side by v;

=> m\frac{v}{r} = qB

Make v subject of the formula

v = \frac{qBr}{m}

From the question;

B = 1.25T

m = mass of proton = 1.67 x 10⁻²⁷kg

r = 0.40m

q = charge of a proton = 1.6 x 10⁻¹⁹C

Substitute these values into equation(iii) as follows;

v = \frac{(1.6*10^{-19})(1.25)(0.4)}{(1.67*10^{-27})}

v = 4.79 x 10⁷m/s

Now, the kinetic energy, K, is given by;

K = \frac{1}{2}mv²

m = mass of proton

v = velocity of the proton as calculated above

K = \frac{1}{2}(1.67*10^{-27} * (4.79 * 10^7)^2 )

K = 1.92 x 10⁻¹²J

The kinetic energy is 1.92 x 10⁻¹²J

8 0
3 years ago
How high would the level be in a gasoline barometer at normal atmospheric pressure?
Sergio [31]

Answer:

h = 13.06 m

Explanation:

Given:

- Specific gravity of gasoline S.G = 0.739

- Density of water p_w = 997 kg/m^3

- The atmosphere pressure P_o = 101.325 KPa

- The change in height of the liquid is h m

Find:

How high would the level be in a gasoline barometer at normal atmospheric pressure?

Solution:

- When we consider a barometer setup. We dip the open mouth of an inverted test tube into a pool of fluid. Due to the pressure acting on the free surface of the pool, the fluid starts to rise into the test-tube to a height h.

- The relation with the pressure acting on the free surface and the height to which the fluid travels depends on the density of the fluid and gravitational acceleration as follows:

                                         P = S.G*p_w*g*h

Where,                              h = P / S.G*p_w*g

- Input the values given:

                                         h = 101.325 KPa / 0.739*9.81*997

                                         h = 13.06 m

- Hence, the gasoline will rise up to the height of 13.06 m under normal atmospheric conditions at sea level.

7 0
2 years ago
Two positive point charges repel each other with force 0.36 N when their separation is 1.5 m. What force do they exert on each o
egoroff_w [7]
The answer is: 0.81

I hope this helps :)
6 0
2 years ago
Determine whether each of the statements below is true or false, and place it in the appropriate bin. Objects with equal speeds
lisov135 [29]

Objects with equal speeds definitely have equal velocities. -- FALSE.  For equal velocities, they also have to be going in the same direction.

If you are given an object's velocity, you can definitely determine its speed. -- TRUE.  If you know the velocity, then you know both the object's speed and its direction.

If you know the distance an object travels, and the time it takes to do so, you can determine the object's velocity. -- FALSE. Knowing the distance and time, you can figure out the object's speed.  But if you don't also know the direction it's moving, then you can't say what its velocity is.

If an object moves at constant speed, it must also be moving at constant velocity. -- FALSE.  Besides constant speed, it also needs to move in a straight line to have constant velocity.  If it turns, its velocity changes, even if its speed doesn't.

If an object moves at constant velocity, it must also be moving at constant speed. -- TRUE.  Constant velocity means its speed AND its direction are not changing.

Objects with equal velocities definitely have equal speeds. -- TRUE.  If their velocities are equal, then their speeds are equal AND they're moving in the same direction.

After laboring through this one, I'm wondering if there can possibly be any more ways to say the same thing.

7 0
3 years ago
PLEASE HELP it takes tsooo long! lol ima fail! please help! thanks!
Natasha_Volkova [10]

Answer:

A and c, hope i helped xx

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • True or false Sound waves do not require a medium in which to travel
    9·2 answers
  • A flowerpot falls off a windowsill and falls past the window below. You may ignore air resistance. It takes the pot 0.400 s to p
    5·1 answer
  • A charged particle is moving in a uniform magnetic field at a speed of 8.2Ã10^3 m/s in a direction 87° from the direction of th
    14·1 answer
  • Help yet again :) A hockey player is skating on the ice at 15km/h. He shoots the puck at 138 km/h according to a radar gun on th
    7·1 answer
  • According to Newton's third law of motion, which are equal
    13·1 answer
  • Earth's inner core is:a dense ball of solid metal
    7·1 answer
  • What is terminal velocity and when is it reached?
    12·1 answer
  • An object is 70 micrometer long and 47.66 micrometer wide. How long and wide is the object in km
    8·1 answer
  • Check the photo and try me help​
    11·1 answer
  • Acceleration; F = - F
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!