Answer:
I would agree with the statement. it's not just the body, but everything that we see is almost 99.9999% empty space
Time = (distance) / (speed)
Time = (150 x 10⁹ m) / (3 x 10⁸ m/s) =
50 x 10¹ sec =
<em>500 sec</em> = 8 min 20 sec
Answer:
Range, 
Explanation:
The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.
Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.
So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops
Therefore {tex}R = MV²/2QE{/tex}
Explanation:
The moment of inertia of each disk is:
Idisk = 1/2 MR²
Using parallel axis theorem, the moment of inertia of each rod is:
Irod = 1/2 mr² + m (R − r)²
The total moment of inertia is:
I = 2Idisk + 5Irod
I = 2 (1/2 MR²) + 5 [1/2 mr² + m (R − r)²]
I = MR² + 5/2 mr² + 5m (R − r)²
Plugging in values:
I = (125 g) (5 cm)² + 5/2 (250 g) (1 cm)² + 5 (250 g) (5 cm − 1 cm)²
I = 23,750 g cm²
Answer:
Explanation:
A
Those devices the hold up while the pitcher is pitching measures speed. It has nothing to do with weather and temperature.