PH is simply a convenient way to denote hydronium ion concentration (usually in moles per liter or molarity). pH is calculated from the given concentration using the equation: pH = -log [H3O⁺]
To find [H3O+] from the given equation, we apply the antilog.
[H3O⁺] = 10⁻⁽pH⁾ or ten raised to the negative value of pH
A solution with a pH of 3.43 has a hydrogen ion concentration of 3.7154x10^-4 moles per liter.
Answer:
The specific heat of copper when heated to 221.32 (not listed form of heat measurement) is 221.32 (not listed form of heat measurement).
Explanation:
uh not really sure what else there is here, I may be missing something
Answer:
PCl3 + 3H2O → HPO(OH)2 + 3HCl. Phosphorus(III) chloride react with water to produce phosphorous acid and hydrogen chloride.
Explanation:
Sodium is a metal, Chloride is a non-metal.
Right off the bat, you know that in order for both of these atoms to achieve a full valence shell that the metal has to lose electrons, and the non-metal has to gain them.
Therefore, you have the transfer of electrons in this bond in order to form ions.
Na+ and Cl-. This transfer of electrons in a bond is called an {{ Ionic Bond}}
16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.