Answer:
the open bag allowed the gas from the reaction to escape
The balanced equation for the generation of sugar from
sunlight water and CO₂ is
6 CO₂ + 6 H₂O → C₆H₁₂O₆ + 6 O₂
carbon dioxide + water → sugar + oxygen
<span>The process of photosynthesis occurs
when the chlorophyll present in the leaves of plants absorb sunlight to make
food in the presence of carbon dioxide (enters through the stomata of leaves)
and water (absorbed from the roots). As a result of this reaction sugar and
oxygen is formed. After that sugar is converted in to starch and oxygen is released
into air.</span>
Gases near together and vibrate in position however, don't circulate beyond each other. In a liquid, the particles are interested in every different but now not as a great deal as they may be in a strong.
The particles of a liquid are near together, constantly transferring, and may slide beyond one another. The Kinetic-molecular concept attempts to explain the behavior of fuel molecules based totally on the nature of gasoline. The principle is grounded on simple assumptions
In gases the debris passes swiftly in all directions, regularly colliding with every different facet of the box. With a boom in temperature, the debris gains kinetic strength and passes more quickly. Gasoline is a state of matter that has no constant form and no fixed extent. Gases have a decreased density than other states of the count, together with solids and liquids. there may be a high-quality deal of empty area between debris, that have loads of kinetic energy and aren't especially drawn to one another.
Learn more about the behavior of particles here:-brainly.com/question/2456191
#SPJ9
There are two ways to solve this problem. We can use the ICE method which is tedious and lengthy or use the Henderson–Hasselbalch equation. This equation relates pH and the concentration of the ions in the solution. It is expressed as
pH = pKa + log [A]/[HA]
where pKa = - log [Ka]
[A] is the concentration of the conjugate base
[HA] is the concentration of the acid
Given:
Ka = 1.8x10^-5
NaOH added = 0.015 mol
HC2H3O2 = 0.1 mol
NaC2H3O2 = 0.1 mol
Solution:
pKa = - log ( 1.8x10^-5) = 4.74
[A] = 0.015 mol + 0.100 mol = .115 moles
[HA] = .1 - 0.015 = 0.085 moles
pH = 4.74 + log (.115/0.085)
pH = 4.87
Answer:
When a sodium atom transfers an electron to a chlorine atom, forming a sodium cation (Na+) and a chloride anion (Cl-), both ions have complete valence shells, and are energetically more stable. The reaction is extremely exothermic, producing a bright yellow light and a great deal of heat energy.