We want:
S(s) + O2(g) --> SO2(g)
So the following are the given:
1) S(s) + 3/2O2(g) --> SO3(g) ∆H = -395.8 kJ/mole
2) 2SO2 + O2 --> 2SO3(g) ∆H = -198.2 kJ/mole
Reverse Equation 2) and then divide by 2
SO3(g) --> SO2(s) + 1/2O2(g) ∆H = +99.1 kJ/mole
Add Equation 1)
S(s) + O2(g) --> SO2(g) ∆H = -296.7 kJ/mole
Answer:
it can be recycled over and over again
<span>A chemical reaction is required to separate the substances in a compound. The components of a mixture can be separated based on their physical properties using techniques like filtration or distillation.</span>
Molecular structure. Isomers have the same formula, so there is the same elements in both. But they have a different molecular structure and when drawn they look different
In order to solve the total pressure that is exerted by the gases, we need to use the Dalton's Law of Partial pressures. These are the calculations that you need to find out the total amount of pressure exerted to the gases:
3.00atm (N2) + 1.80atm (O2) + 0.29atm (Ar) + 0.18atm (He) + 0.10atm (H),
add up all of that, and the answer would turn out to be: 5.37atm.