Hand pumps are manually operated pumps; they use human power and mechanical advantage to move fluids or air from one place to another. They are widely used in every country in the world for a variety of industrial, marine, irrigation and leisure activities. There are many different types of hand pump available, mainly operating on a piston, diaphragm or rotary vane principle with a check valve on the entry and exit ports to the chamber operating in opposing directions.
Hand pumps are manually operated pumps; they use human power and mechanical advantage to move fluids or air from one place to another. They are widely used in every country in the world for a variety of industrial, marine, irrigation and leisure activities. There are many different types of hand pump available, mainly operating on a piston, diaphragm or rotary vane principle with a check valve on the entry and exit ports to the chamber operating in opposing directions.
Answer:

Explanation:
Since the force applied is parallel to the displacement of the car, the work done on the car is simply given by:

where
F = 1210 N is the force applied on the car
d = 201 m is the displacement of the car
Substituting numbers into the equation, we find:

<span>The amplitude because that controls the height of the wave. Correct answer: Amplitude.</span>
Try this solution:
if given m=0.15 kg; t₁=20 °C; t₂=100 °C; c=4190 J/(kg*C); q=226*10⁴ J/kg., then
Q=Q₁+Q₂,
where Q₁=cm(t₂-t₁) and Q₂=q*m.
Finally,
Q=cm(t₂-t₁)+qm;
Q=4190*0.15*80+2240000*0.15=386280 J=<u>386.28 kJ</u>.
Answer:
You will cover a distance of 1569.06 metres. Or you could round down to 1,569m.
Explanation:
20.7*75.8=1563.06