Answer:
the heat absorbed by the block of copper is 74368.476J
Explanation:
Hello!
To solve this problem use the first law of thermodynamics that states that the heat applied to a system is the difference between the initial and final energy considering that the mass and the specific heat do not change so we can infer the following equation
Q=mCp(T2-T1)
Where
Q=heat
m=mass=2.3kg
Cp=0.092 kcal/(kg C)=384.93J/kgK
T2=Final temperatura= 90C
T1= initial temperature=6 C
solving
the heat absorbed by the block of copper is 74368.476J
Answer:
1.5024
Explanation:
Draw a diagram. Put the two cells in series. Now draw 3 resistors. Two of them equal 0.26 ohms each. The third one is the lightbulb which is 12 ohms.
R = 0.26 + 0.26 + 12 = 12.52
The bulb has a voltage of 2.88 volts across it. You can get the current from that.
i = E / R
i = 2.88 / 12 =
i = 0.24 amps.
Now you can get the voltage drop across the two cells.
E = ?
R = 0.26
i = 0.24 amps
E = 0.26 * 0.24
E = 0. 0624
Finally divide the 2.88 by 2 to get 1.44
Each cell has an emf of 1.44 + 0.0624 = 1.5024