The latent heat of fusion of water is 344 j/p.This will take 344x300 or 100200 J to melt the ice. once it melted its at oc
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
Answer:
What is the correct path of sperm cells through the male reproductive system?
Epididymis, seminiferous tubules, urethra, vas deferens
<u>Seminiferous tubules, epididymis, vas deferens, urethra
</u>
Urethra, seminiferous tubules, epididymis, vas deferens
Seminiferous tubules, vas deferens, epididymis, urethra
Hope this helps :)
Have a great day !
5INGH
Explanation:
Answer:
Time, t = 0.015 seconds.
Explanation:
Given the following data;
Mass, m = 0.2kg
Force, F = 200N
Initial velocity, u = 40m/s
Final velocity, v = 25m/s
To find the time;
Ft = m(v - u)
Time, t = m(v - u)/f
Substituting into the equation, we have;
Time, t = 0.2(25 - 40)/200
Time, t = 0.2(-15)/200
Time, t = 3/200
Time, t = 0.015 seconds.
Note: We ignored the negative sign because time can't be negative.
Answer:
The speed of the 11.5kg block after the collision is V≅4.1 m/s
Explanation:
ma= 4.8 kg
va1= 7.3 m/s
va2= - 2.5 m/s
mb= 11.5 kg
vb1= 0 m/s
vb2= ?
vb2= ( ma*va1 - ma*va2) / mb
vb2= 4.09 m/s ≅ 4.1 m/s