Answer:
THE WALL MOVES AWAY FROM THE BALL
Explanation:
NEWTON'S THIRD LAW STATES THAT THERE IS A OPPOSITE REACTION
A <span>Compound has a definte ratio of components</span>
Answer:
The magnitude of the acceleration is 1.2 × 10⁴ mi/h²
Explanation:
Hi there!
The acceleration is defined as the change in velocity in a time:
a = Δv / Δt
Where:
a = acceleration.
Δv = change in velocity = final velocity - initial velocity.
Δt = elapsed time.
In this case:
Initial velocity = 60 mi/h
final velocity = 50 mi/h
elapsed time = 3.0 s
Let´s convert the time unit into h:
3.0 s · 1 h /3600 s = 1/1200 h
Now, let´s calculate the acceleration:
a = Δv / Δt
a = (50 mi/h - 60 mi/h) / 1/1200 h
a = -1.2 × 10⁴ mi/h²
The magnitude of the acceleration is 1.2 × 10⁴ mi/h²
Answer:
Explanation:
Newton's first law of motion.
Newton's second law of motion.
Newton's law of universal gravitation.
Law of conservation of mass.
Law of conservation of energy.
Law of conservation of momentum
<h2>
Answer:</h2>
Answer to this question is (A)
<h2>
Explanation</h2>
A ball bouncing on the floor is not the example of simple harmonic motion. SHM is the special kind of to and fro motion in which a particle oscillate about its mean position in a straight line. The acceleration of the particle is always directed towards its mean position and is directly proportional to its displacement from its mean position.
In case of a ball bouncing on the ground, the motion of the ball is not SHM, as neither it’s a to and fro motion nor the acceleration is proportional to its displacement from its mean position.