Answer:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling
Answer:
3rd order polynomial
Explanation:
Given that the increase in the order of the polynomial the error between the curve fit and measured data will decreases hence :
The polynomial order that is best to use is the 3rd order polynomial, this is because using a 3rd order polynomial will produce a less variance and a low Bias
Answer:
They are known as isotopes
Answer:
196.34 °F
Explanation:
To convert from degrees celsius to degrees fahrenheit, use this equation:
(°C * 9/5) + 32 = °F
So, using this equation:
(91.30 * 9/5) + 32 = °F
196.34 + 32 = °F
°F = 196.34
Hope this helps!
Answer:
Explanation:
There are different theories and evidence about the big bang, in this case, we're going to see three evidence.
The galaxies are moving from us, this means space is expanded, this in consequence Big Bang's explosion.
The cosmic microwave background radiation is related to the early warmth of the universe.
The observed abundance of hydrogen, helium, deuterium, lithium, these are checked from the spectra of the oldest stars.