Answer:
Substance 4
Explanation:
Density is defined as mass per unit volume. A substance floats in another when its density is less than that of the substance on which it floats.
If an object is immersed in a denser liquid, it will sink
Since the density of water is 1 g/cm^3, any substance whose density is less than that of water will float in it.
If we look at the table, substance 4 has a density of 0.5g/cm^3. Hence, substance 4 is expected to float in water.
Answer: Group 1 would have the lowest electronegativity values.
Explanation:
Electronegativity is the power of an atom in a molecule to attract electrons. It is also synonymous with the oxidizing ability or non-metallic character of elements.
Generally, across a given period from left to right, electronegativity increases due to increasing nuclear charge and decreasing atomic radius ( or atomic size ). This is because there is a greater tendency for a smaller atom with higher nuclear attraction to attract electrons than a larger atom with a lower nuclear attraction due to the shielding effect of the nuclear attraction by the inner shell electrons on the outermost electrons in the larger atom.
Also, down a particular group, electronegativity generally decreases due to increasing atomic radius/size.
This is why metals are generally electropositive ( lose electrons ) and non-metals are electronegative ( gain electrons ) as they are both found more on the left and right sides of the periodic table respectively.
<span>They are not seen in nature because they are always combined with something to make something else.</span>
Answer:
13.0mL
Explanation:
So this is a classic M1V1=M2V2 problem, where M is molarity and V is volume and the subsequent numbers represent the two sets of condition (1 being before dilution and 2 being after dilution)
So M1 is going to be 5.0M because it is our initial molarity and V1 is what we are trying to find since we are trying to find how much of initial volume should be diluted.
M2 is 1.30M since it is what molarity is after dilution and M2 is what volume is after dilution which is 50mL.
So M1V1=M2V2 (becomes an algebra problem)
5*V1=1.30*50
V1= 13.0mL
Now this answer should make sense since to dilute something with large molarity to small you only need very few mL than the final volume because you add water to dilute it.