Answer: 27 Hope it helps u
 
        
             
        
        
        
<u>Answer:</u> The quantity of every prefix is written below as a power of ten.
<u>Explanation:</u>
In the metric system of measurement, the name of multiples and subdivision of any unit is done by combining the name of the unit with the prefixes.
<u>For Example:</u> deka, hecto and kilo means 10, 100 and 1000 respectively. Deci, centi and milli means one-tenth, one-hundredth, and one-thousandth respectively.
The quantity of these prefixes are written as the power of 10.
For the given prefixes:
<u>Nano:</u>  The quantity will be 
<u>Kilo:</u>  The quantity will be 
<u>Centi:</u>  The quantity will be 
<u>Micro:</u>  The quantity will be 
<u>Milli:</u>  The quantity will be 
<u>Mega:</u>  The quantity will be 
Hence, the quantity of every prefix is written above as a power of ten.
 
        
             
        
        
        
HBr and HF are both monoprotic Arrhenius acids—that is, in aqueous solution, they dissociate and ionize to give hydrogen ions. A strong acid ionizes completely; a weak acid ionizes partially. 
In this case, HBr, being a strong acid, would ionize completely in water to yield H+ and Br- ions. However, HF, being a weak acid, would ionize only to a limited extent: some of the HF molecules will ionize into H+ and F- ions, but most of the HF will remain undissociated.
pH is, by definition, a measurement of the concentration of hydrogen ions in solution (pH = -log[H+]). A higher concentration of hydrogen ions gives a lower pH, while a lower concentration of hydrogen ions gives a higher pH. At 25 °C, a pH of 7 indicates a neutral solution; a pH less than 7 indicates an acidic solution; and a pH greater than 7 indicates a basic solution.
If we have equal concentrations of HBr and HF, then the HBr solution will have a greater concentration of hydrogen ions in solution than the HF solution. Consequently, the pH of the HBr solution will be less than the pH of the HF solution.
Choice A is incorrect: Strong acids like HBr dissociate completely, not partially.
Choice B is incorrect: While the initial concentration of HBr and HF are the same, the H+ concentration in the HBr solution is greater. Since pH is a function of H+ concentration, the pH of the two solutions cannot be the same.
Choice C is correct: A greater H+ concentration gives a lower pH value. The HBr solution has the greater H+ concentration. Thus, the pH of the HBr solution would be less than that of the HF solution.
Choice D is incorrect for the reason why choice C is correct.