1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
4 years ago
15

A piston-cylinder device contains an ideal gas mixture of 3 kmol of He gas and 7 kmol of Ar gas (both gases are monatomic) at 27

°C and 200 kPa. Now the gas expands at constant pressure until its volume doubles. The amount of heat transfer to the gas mixture is, in MJ (round to nearest integer; for example if the answer is 53.7MJ, write 54; if the answer is 52.1MJ write 52; do not include the units in your answer)
Engineering
2 answers:
lidiya [134]4 years ago
5 0

Answer:

Q = 62    ( since we are instructed not to include the units in the answer)

Explanation:

Given that:

n_{HCl} = 3 \ kmol\\n_{Ar} = 7 \ k mol

T_1 = 27^0 \ C = ( 27+273)K =  300 K

P_1 = 200 \ kPa

Q = ???

Now the gas expands at constant pressure until its volume doubles

i.e if V_1 = x\\V_2 = 2V_1

Using Charles Law; since pressure is constant

V \alpha T

\frac{V_2}{V_1}  =\frac{T_2}{T_1}

\frac{2V_1}{V_1}  =\frac{T_2}{300}

T_2 = 300*2\\T_2 = 600

mass of He =number of moles of He × molecular weight of He

mass of He = 3 kg  × 4

mass of He = 12 kg

mass of Ar =number of moles of Ar × molecular weight of Ar

mass of He = 7 kg  × 40

mass of He = 280 kg

Now; the amount of  Heat  Q transferred = m_{He}Cp_{He} \delta T  + m_{Ar}Cp_{Ar} \delta T

From gas table

Cp_{He} = 5.9 \ kJ/Kg/K\\Cp_{Ar}  = 0.5203 \  kJ/Kg/K

∴ Q = 12*5.19*10^3(600-300)+280*0.5203*10^3(600-300)

Q = 62.389 *10^6

Q = 62 MJ

Q = 62    ( since we are instructed not to include the units in the answer)

vfiekz [6]4 years ago
4 0

Answer:

Q = 62

Explanation:

The solution is obtained by manipulating the energy balance of the system:

Q = W + ΔU

⇒ Q = P*(V₂ - V₁) + mcv*(T₂ - T₁)

⇒ Q = P*V₁ + m*(((mcv)He /m) + ((mcv)Ar /m)*((P*V₂/(mR) - T₁)

⇒ Q = mRT₁ + ((mcv)He + (mcv)Ar)*(2P*V₁/(mR) - T₁)

⇒ Q = T₁*(Nm*Ru + (mcv)He + (mcv)Ar)

⇒ Q = T₁*(Nm*Ru + (MNcv)He + (MNcv)Ar)

where

T₁ = (27 + 273) K = 300 K

Nm = (7 + 3) kmol = 10 kmol = 10⁴ mol

Ru = 8.314 J*K⁻¹*mol⁻¹

(MNcv)He = (4 g*mol⁻¹)*(3*10³ mol)*(3.1156 kJ*Kg⁻¹*K⁻¹)*(1 kg/10³ g)*(1 MJ/10³ kJ) = 0.0373872 MJ*K⁻¹

(MNcv)Ar = (40 g*mol⁻¹)*(7*10³ mol)*(0.3122 kJ*Kg⁻¹*K⁻¹)*(1 kg/10³ g)*(1 MJ/10³ kJ) = 0.087416 MJ*K⁻¹

Finally, we get

⇒ Q = 300*(10*8.314 + 4*3*3.1156 + 40*7*0.3122)*10⁻³

⇒ Q = 62

You might be interested in
Yes I’m very cool I promise.
Alex
Okay I believe you I swear
8 0
3 years ago
What is the name for a program based on the way your brain works?
xxMikexx [17]

Answer:

KAT

Explanation:

I believe this is what ur looking for

8 0
3 years ago
Read 2 more answers
A car is traveling at sea level at 78 mi/h on a 4% upgrade before the driver sees a fallen tree in the roadway 150 feet away. Th
Dmitrij [34]

Answer: V = 47.7 mi/hr

Explanation:

first we calculate elements of aero-dynamic resistance

Ka = p/2 * CD * A.f

p is the density of air(0.002378 slugs/ft^3) for zero altitude, CD is the drag coefficient(0.35) and A.f is the front region of the vehicle

so we substitute

Ka = 0.002378/2 * 0.35 * 18

Ka = 0.00749

Now we calculate the final speed of the vehicle (V2) using the relation;

S = (YbW/2gKa)In[ (UW + KaV1^2 + FriW ± Wsinθg) / (UW + KaV2^2 + FriW ± Wsinθg)

so

WE SUBSTITUTE

150 = (1.04 * 2700 / 2 * 32.2 * 0.0075) In [(0.8 * 2700 + 0.0075 *(78mil/hr * 5280ft/1min * 1hr/3600s)^2 + 0.017 * 2700 ± 2700 * 0.04) / (0.8 * 2700 + 0.0075 * V2^2 + 0.017 * 2700 ± 2700 * 0.04)]

150 = (2808/0.483) In [(2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

150 = 5813.66 In [ (2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

divide both sides by 5813.66

0.0258 = In [ (2412.06) / ( 0.0075V2^2 + 2313.9)]

take the e^ of both side

e^0.0258 = (2412.06) / ( 0.0075V2^2 + 2313.9)

1.0261 = (2412.06) / ( 0.0075V2^2 + 2313.9)]

(0.0075V2^2 + 2313.9) = 2412.06 / 1.0261

(0.0075V2^2 + 2313.9) = 2350.7

0.0075V2^2 = 2350.7 - 2313.9

0.0075V2^2 = 36.8

V2^2 = 36.8 / 0.0075

V2^2 = 4906.6666

V2 = √4906.6666

V2 = 70.0476 ft/s

converting to miles per hour

V2 = 70.0476 ft/s * 1 mil / 5280 ft * 3600s / 1hr

V = 47.7 mi/hr

8 0
3 years ago
The link acts as part of the elevator control for a small airplane. If the attached aluminum tube has an inner diameter of 25 mm
aksik [14]

Answer:

Tmax=14.5MPa

Tmin=10.3MPa

Explanation:

T = 600 * 0.15 = 90N.m

T_max =\frac{T_c}{j}  = \frac{x}{y}  = \frac{90 \times 0.0175}{\frac{\pi}{2} \times (0.0175^4-0.0125^4)}

=14.5MPa

T_{min} =\frac{T_c}{j}  = \frac{x}{y}  = \frac{90 \times 0.0125}{\frac{\pi}{2} \times (0.0175^4-0.0125^4)}

=10.3MPa

7 0
3 years ago
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer
gulaghasi [49]

Answer:

809.98°C

Explanation:

STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.

Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.

Biot value = (220 × 0.1)÷ 110 = 0.2.

Biot value = 0.2.

STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;

Fourier number = thermal diffusivity × time ÷ (length)^2.

Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.

STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.

Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.

= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.

5 0
3 years ago
Other questions:
  • Determine displacement (in) of a 1.37 in diameter steel bar, which is 50 ft long under a force of 27,865 lb if elasticity modulu
    5·1 answer
  • ). A 50 mm diameter cylinder is subjected to an axial compressive load of 80 kN. The cylinder is partially
    8·1 answer
  • 6.3.3 Marks on an exam in a statistics course are assumed to be normally distributed
    14·1 answer
  • The website of a bank that an organization does business with has been reported as untrusted by the organization's web browser.
    12·1 answer
  • Parting tool purpose
    13·1 answer
  • 1. Springs____________<br> energy when compressed<br> And _________energy when they rebound.
    12·1 answer
  • Name the four ways in which heat is transferred from a diesel engine
    7·1 answer
  • Who else hates this because i do
    12·2 answers
  • What type of social engineering targets particular?.
    11·1 answer
  • Which level of acceleration should you use when accelerating on a short highway entry ramp?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!