Answer:
We don't have the passage. A random sampling of surfactant uses includes:
- removal of oily materials from objects (clothes and dishes)
- forms remarkable structures called bubbles
- Assists in forming emulsions (e.g., mayonaise and paints)
Explanation:
The structure of a surfactant makes one end of a molecule hydrophilic and the other end hydrophobic. In water, they self-assemble into micelles, an arrangement in which the hydrophobic ends align towards the center, and the hydrophilic ends are pointed outwards to the water. This self-assembly is apparant when bubbles are made. The molecules quickly align themselves such that the hyrophilic ends are oriented inwards towards a thin layer of water and the hydrophobic ends are pointed outward to the air. This arrangement allows a mono-molecular sphere of water molecules to remain stable enough to float, reflect light, and please. These same properties allow the inverse to occur. Soap molecules surround a hydrophobic mass (e.g., the hamburger grease on your shirt) and solubilize it into small micelles which are then carried away in the surrounding water.
Answer:
dipole-dipole interactions.
Explanation:
hope this helps
plz mark brainliest
Answer:
the initial concentration of SCN- in the mixture is 0.00588 M
Explanation:
The computation of the initial concentration of the SCN^- in the mixture is as follows:
As we know that

As it is mentioned in the question that KSCN is present 10 mL of 0.05 M
So, the total milimoles of SCN^- is
= 10 × 0.05
= 0.5 m moles
The total volume in mixture is
= 45 + 10 + 30
= 85 mL
Now the initial concentration of the SCN^- is
= 0.5 ÷ 85
= 0.00588 M
hence, the initial concentration of SCN- in the mixture is 0.00588 M
1. Weird things like the one described above do not happen on a ramdom basis becuause molecules usually move within any enclosure in a ramdom manner. Thus, it is not possible for some types of particles to aggregate in one point while other types of molecule aggreagate in another point. Based on the kinetic energy that is available for each particle, each particle will move random
through the available space, colliding with one another and with the wall of container.
2. It will be a difficult thing to live in a Maxwell' demon world because, things will happen unpredictably and one will never know what to expect next because anything can happen at anytime. For instance, if one is drinking a glass of water, some of the particles of the water may just decide to aggregate to one part of the cup and start boiling. So, for someone who is taking a glass of water, the water may start boiling right inside his mouth when he is drinking, that will be a bad experience. When one is driving a car, the petrol particles may just decide to freeze up when one is busy speeding on the highway; that can cause a very serious accident. Thus, a world where the Maxwell law operates will be a chaotic world.
Answer:
So 1 mole
Explanation:
PV = nRT
P = Pressure atm
V = Volume L
n = Moles
R = 0.08206 L·atm·mol−1·K−1.
T = Temperature K
standard temperature = 273K
standard pressure = 1 atm
22.4 liters of oxygen
Ok so we have
V = 22.4
P = 1 atm
PV = nRT
n = PV/RT
n = 22.4/(0.08206 x 273)
n = 22.4/22.40
n = 1 mole