Answer:
C. The larger a molecule, the faster it will effuse.
Explanation:
The sentence C "The larger a molecule, the faster it will effuse" is false because, it is the exact opposite. When a molecule is bigger it takes longer to effuse because has more components that have to pass through that effect making it last longer tan short molecules.
Answer: The product are the new substances that are created following a chemical reaction.
<span>Phosphorus is about 0.099% in the Earth's crust. Among the elements in Group 15 in the periodic table, it is the most abundant. Also, it is the most dispersed element in nature. However, it does not occur as a free element. It occurs as a compound.</span>
For the answer to the question above, <span>The formula for freezing point depression is </span>
<span>ΔTf = mkfi </span>
<span>kf is the freezing point constant </span>
<span>i is the Van't Hoff factor which in this case is 1 </span>
<span>m is molality (moles of solute/kg of solvent) </span>
<span>ΔTf is temperature change </span>
<span>ΔTf is 2.17 °C, the molality is the amount of solute Quinine </span>
<span>in the solvent cyclohexane. We cannot calculate moles therefore we need to substitute moles with g/mm. </span>
<span>moles = g/mm so molality=(g/mm)/kg </span>
<span>molality = (0.845/mm)/0.025 = 33.8/mm </span>
<span>2.17 = 33.8/mm(20.8) rearrange </span>
<span>mm = (33.8/2.17)(20.8) = 324g/mol</span>
The volume measured using such a cylinder will be reported to the nearest 10th mL.
<h3>Cylinder graduation</h3>
10 mL graduated cylinders are always read to the nearest two decimal places.
100 mL graduated cylinders are always read to the nearest 1 decimal place. The nearest 1 decimal place is the same thing as the nearest 10th.
Thus, a reading made using a 100mL increment graduated cylinder would be reported to the nearest 10th mL.
More on cylinder graduation can be found here: brainly.com/question/14427988
#SPJ1