Answer:
The coin is less dense than the water thefore it can float.
Explanation:
Answer: Q=5.46 L/s
COP=2.58
Explanation:
Given that
Cp = 4.18 kJ/(kg.C
density = 1 kg/L
Heat rejected Qr= 570 kJ/min
Power in put W= 2.65 KW
From first law of thermodynamics
U = W+ q
q = Heat absorbed
U = internal energy
W = workdone
U = 570 kJ/min = 9.5 KW
9.5 = 2.65 + q
q = 6.85 KW
COP = q/W
COP = 6.58 / 2.65
COP=2.58
Lets take volume flow rate is Q
So mass flow rate of water m = ρ Q
q = m Cp ΔT
6.85 = 1 x Q x 4.18 ( 23-5)
Q=0.091 L/min
Q=5.46 L/s
Answer:
For 6.0 eV
0.5 nm, 1.45*10^6 m/s, 6.17*10^10 m/s, 1.45*10^6 m/s
For 600 eV
1.26*10^-3 nm, 2.66*10^8 m/s, 3.37*10^8 m/s, 2.66*10^8 m/s
Explanation:
See attachment for calculation
Answer:
D. I stayed up late for several nights. Eventually, I was too tired to concentrate.
Explanation:
i got it right edge 2020.
Yes. Think of block sitting on top of a bigger block. If the bottom block moves, it will drag the top block with it. Since the force of friction on the small block and its displacement are in the same direction, the "work" is positive. The static friction is a passive force, It is not a source of energy; it transmits the force placed on the bottom block. (And the "work" done by the friction on the bottom block is exactly the negative of the work done on the top block.)