The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer:
a)-1.014x
J
b)3.296 x
J
Explanation:
For Sphere A:
mass 'Ma'= 47kg
xa= 0
For sphere B:
mass 'Mb'= 110kg
xb=3.4m
a)the gravitational potential energy is given by
= -GMaMb/ d
= - 6.67 x
x 47 x 110/ 3.4 => -1.014x
J
b) at d= 0.8m (3.4-2.6) and
=-1.014x
J
The sum of potential and kinetic energies must be conserved as the energy is conserved.
+
=
+ 
As sphere starts from rest and sphere A is fixed at its place, therefore
is zero
=
+ 
The final potential energy is
= - GMaMb/d
Solving for '
'
=
+ GMaMb/d => -1.014x
+ 6.67 x
x 47 x 110/ 0.8
= 3.296 x
J
Answer:
Explanation:
Angular momentum has a formula of L = mvr. Fillingin:
L = (1.0)(5.0)(1.0)
L = 5.0 kg*m/s