Answer:
Explanation:
Initial angular velocity ω₀ = 151 x 2π / 60
= 15.8 rad /s
final velocity = 0
Angular deceleration α = 2.23 rad / s
ω² = ω₀² - 2 α θ
0 = 15.8² - 2 x 2.23 θ
= 55.99 rad
one revolution = 2π radian
55.99 radian = 55.99 / 2 π no of terns
= 9 approx .
Answer:
The specific kinetic energy of a mass is 0.8 kJ/kg
Explanation:
Given that,
Velocity = 40 m/s
Specific kinetic energy is the kinetic energy per unit mass.
We need to calculate the specific kinetic energy
Using formula of specific kinetic energy


Put the value into the formula


We know that,
1 kJ = 1000 J
or, 1J=0.001 KJ
The specific energy is


Hence, The specific kinetic energy of a mass is 0.8 kJ/kg
If the light is traveling straight up, then it hits the interface (surface
or boundary) between water and air perpendicularly (90° to the surface).
This direction is the direction of the 'normal' to the surface. So the
angle of incidence is zero, and that means the angle of refraction is
also zero. The light just keeps going in the same direction when it
emerges into the air, and is not bent.
However, its speed increases in air, and that means its wavelength
also becomes longer than it was in the water.
Answer:
0.71ohms
Explanation:
AC and CB are in series hence the total resistance is 3+2=5ohms
AD and DB are in series hence the total resistance is 3+2=5ohms
These resistances are parallel to resistance AB
Let the equivalent resistance be R.
For resistances in parallel
Hence the total resistances are:
5//1//5
1/R =1/5 + 1/1 +1/5 = 1+5+1 /5 = 7/5
Hence the total resistance is R= 1/ 7/5 = 1×5/7= 5/7=0.71ohms
To solve this problem it is necessary to apply the concepts related to the conservation of the Momentum describing the inelastic collision of two bodies. By definition the collision between the two bodies is given as:

Where,
= Mass of each object
= Initial Velocity of Each object
= Final Velocity
Our values are given as




Replacing we have that



Therefore the the velocity of the 3220 kg car before the collision was 0.8224m/s