1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
6

In being served, a tennis ball is accelerated from rest to a speed of 42.1 m/s. The average power generated during the serve is

2920 W. Assuming that the acceleration of the ball is constant during the serve, find the force acting on the ball.
Physics
1 answer:
hoa [83]3 years ago
8 0

Answer:

Force F = 69.35 N

Explanation:

given data

Ball Initial speed u = 0

Ball Final speed v = 42.1 m/s

average power generate = 2920 W

solution

Power generate is express as

P= \frac{W}{t}   ..............1

here W is work done and t is time

and work w = F × d

so

P= \frac{Fd}{t}  

and we know speed v = \frac{d}{t}  

so here

Power P = F × v

put here value and we get force

Force F = \frac{2920}{42.1}

Force F = 69.35 N

You might be interested in
A wire of resistance R is cut into ten equal parts which are then connected in parallel. The equivalent resistance of the combin
Greeley [361]

Answer:

<em>The equivalent resistance of the combination is R/100</em>

Explanation:

<u>Electric Resistance</u>

The electric resistance of a wire is directly proportional to its length. If a wire of resistance R is cut into 10 equal parts, then each part has a resistance of R/10.

Parallel connection of resistances: If R1, R2, R3,...., Rn are connected in parallel, the equivalent resistance is calculated as follows:

\displaystyle \frac{1}{R_e}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+...+\frac{1}{R_n}

If we have 10 wires of resistance R/10 each and connect them in parallel, the equivalent resistance is:

\displaystyle \frac{1}{R_e}=\frac{1}{R/10}+\frac{1}{R/10}+\frac{1}{R/10}...+\frac{1}{R/10}

This sum is repeated 10 times. Operating each term:

\displaystyle \frac{1}{R_e}=\frac{10}{R}+\frac{10}{R}+\frac{10}{R}+...+\frac{10}{R}

All the terms have the same denominator, thus:

\displaystyle \frac{1}{R_e}=10\frac{10}{R}=\frac{100}{R}

Taking the reciprocals:

R_e=R/100

The equivalent resistance of the combination is R/100

6 0
3 years ago
14
Minchanka [31]

Answer:

C

Explanation:

8 0
2 years ago
Read 2 more answers
A thin double convex glass lens with an index of 1.56 while surrounded by air has a 10 cm focal length. If it is placed under wa
bearhunter [10]

Explanation:

Formula which holds true for a leans with radii R_{1} and R_{2} and index refraction n is given as follows.

          \frac{1}{f} = (n - 1) [\frac{1}{R_{1}} - \frac{1}{R_{2}}]

Since, the lens is immersed in liquid with index of refraction n_{1}. Therefore, focal length obeys the following.  

            \frac{1}{f_{1}} = \frac{n - n_{1}}{n_{1}} [\frac{1}{R_{1}} - \frac{1}{R_{2}}]  

             \frac{1}{f(n - 1)} = [\frac{1}{R_{1}} - \frac{1}{R_{2}}]

and,       \frac{n_{1}}{f(n - n_{1})} = \frac{1}{R_{1}} - \frac{1}{R_{2}}

or,          f_{1} = \frac{fn_{1}(n - 1)}{(n - n_{1})}

              f_{w} = \frac{10 \times 1.33 \times (1.56 - 1)}{(1.56 - 1.33)}

                          = 32.4 cm

Using thin lens equation, we will find the focal length as follows.

             \frac{1}{f} = \frac{1}{s_{o}} + \frac{1}{s_{i}}

Hence, image distance can be calculated as follows.

       \frac{1}{s_{i}} = \frac{1}{f} - \frac{1}{s_{o}} = \frac{s_{o} - f}{fs_{o}}

              s_{i} = \frac{fs_{o}}{s_{o} - f}

             s_{i} = \frac{32.4 \times 100}{100 - 32.4}

                       = 47.9 cm

Therefore, we can conclude that the focal length of the lens in water is 47.9 cm.

4 0
2 years ago
A long thin uniform rod of length 1.50 m is to be suspended from a frictionless pivot located at some point along the rod so tha
Dvinal [7]

Answer:

0.087 m

Explanation:

Length of the rod, L = 1.5 m

Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.

time period, T = 3  s

the formula for the time period of the pendulum is given by

T = 2\pi \sqrt{\frac{I}{mgd}}    .... (1)

where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.

Moment of inertia of the rod about the centre of mass, Ic = mL²/12

By using the parallel axis theorem, the moment of inertia of the rod about the pivot is

I = Ic + md²

I = \frac{mL^{2}}{12}+ md^{2}

Substituting the values in equation (1)

3 = 2 \pi \sqrt{\frac{\frac{mL^{2}}{12}+ md^{2}}{mgd}}

9=4\pi^{2}\times \left ( \frac{\frac{L^{2}}{12}+d^{2}}{gd} \right )

12d² -26.84 d + 2.25 =  0

d=\frac{26.84\pm \sqrt{26.84^{2}-4\times 12\times 2.25}}{24}

d=\frac{26.84\pm 24.75}{24}

d = 2.15 m , 0.087 m

d cannot be more than L/2, so the value of d is 0.087 m.

Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.

3 0
2 years ago
Which of the given will facilitate a normal Diels–Alder reaction?
babymother [125]

Answer:

D

Explanation:

-  The rate of the Diels-Alder is orders of magnitude faster if there is an electron-withdrawing group on the dienophile. For example, replacing a hydrogen on ethene with the electron-withdrawing group CN results in about a 10^5 increase in the reaction rate.

- Other common electron withdrawing functional groups that will accelerate the Diels Alder reaction of dienophiles include aldehydes, ketones, and esters.

- In short, any functional group conjugated with the pi bond which can act as a pi acceptor will accelerate a Diels-Alder reaction with a typical diene.

- See attachment for graphical explanation.

7 0
3 years ago
Other questions:
  • The labels of the axes in a line graph consist of _____. A. only the units of measurement B. only the variable name C. the varia
    11·2 answers
  • At a certain location, Earth has a magnetic field of 0.60 â 10â4 T, pointing 75° below the horizontal in a north-south plane. A
    10·1 answer
  • A man stands on a scale in an elevator as shown here. the force of his weight when the elevator is still is fg downward. suppose
    7·1 answer
  • In chemistry class, you are given 3 liquids: Liquid A, Liquid B, and Liquid C. They are each in their own beaker. One of these l
    9·1 answer
  • The charge per unit length on a long, straight filament is-92.0 μC/m. (a) Find the electric field 10.0 cm from the filament, whe
    10·1 answer
  • 4. What is the amplitude of the waves shown in the diagram below?
    10·1 answer
  • 1. Which of the following statement is correct?
    14·2 answers
  • A block of wood
    13·1 answer
  • Write the mathemetical relation between work force and displacement​
    5·1 answer
  • A 500 N person stands on a unifrom board of weight 100 N and length 8.0 m. The board is supported at each end. If the support fo
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!