Answer:
a) Se²⁻> S²⁻ > O²
b) Te²⁻ > I- >Cs+
c) Cs+ > Ba²⁺ > Sr²⁺
Explanation:
(a) Se²⁻, S²⁻, O²⁻
In general, ionic radius decreases with increasing positive charge.
As the charge on the ion becomes more positive, there are fewer electrons.
The ion has a smaller radius. In general, ionic radius increases with increasing negative charge.
For ions of the same charge (e.g. in the same group) the size increases as we go down a group in the periodic table
Se²⁻> S²⁻ > O²
(b) Te²⁻, Cs⁺, I⁻
Te²⁻ > I- >Cs+
Te2- hast the biggest size, because of the double negative charge.
Cs+ has the smallest size since it has the most positive charge, compared to Te2- and I-.
(c) Sr²⁺, Ba²⁺, Cs⁺
Cs+ > Ba²⁺ > Sr²⁺
Cs+ has the biggest size, because its more downward (compared to Sr2+) and more to the left (compared) ot Ba2+.
Sr2+ has the smallest size because it's more upwords (compared to Cs+ and Ba2+)
I will list them from alkaline with the lowest boiling point and alkaline with the highest.
1. C2H6
2. C9H20
3. C11H24
4. C16H34
5. C20H42
6. C32H66
7. C150H302
I have taken a quiz similar to this before and can assure you this is correct and is primarily because of the number of Carbons and Hydrogens within this. More Carbons and Hydrogens causes Boiling Points to increase because of stronger bonds.
Answer:
these elements do not have the same masses.
Answer:
1) Write the balanced equation:
2C2H6 + 7O2 ---> 4CO2 + 6H2O
2) Determine limiting reagent:
C2H6 ⇒ 13.8 g / 30.0694 g/mol = 0.45894 mol
O2 ⇒ 45.8 g / 31.9988 g/mol = 1.4313 mol
C2H6 ⇒ 0.45894 / 2 = 0.22947
O2 ⇒ 1.4313 / 7 = 0.20447
Oxygen is limiting.
3) Determine theoretical yield of water:
The oxygen : water molar ratio is 7 : 6
7 is to 6 as 1.4313 mol is to x
x = 1.2268286 mol of water
4) Convert moles of water to grams:
1.2268286 mol times 18.015 g/mol = 22.1 g (to three sig figs)
Solution to (b):
14.2 g / 22.1 g = 64.2%
Explanation:
Because they are both broke apart over time