Answer:
Microwave: Radiation
Water: Conduction, convection & radiation.
Explanation:
- When we heat a food using microwave then the water content of the food is only heated by the microwave.
- Microwaves make the molecules of water vibrate frequently with a frequency closer to the frequency of microwaves and this increases the kinetic energy of the molecules which produces heat in the water molecules this heat then propagates to the whole food by conduction and convection, but the heat enters the food only via radiation.
Now when the food item is kept into warm water then the molecules closer to the food heat the food by conduction through direct energy transfer by lattice vibrations and when they become cooler than the mass of water all around then due to density difference they settle down and their place is occupied by warmer molecules around in the fluid leading to convection.
Radiation of energy from a mass occurs continuously irrespective of the medium present there. So the heat of water also enters the food by radiation of energy from the water molecules.
This is a problem that can be solved using free-fall motion analysis. Since the displacement (2.9m) is given, we can use the following equation to solve for the impact speed:
V^2 = 2gh
V = sqrt (2*9.8*2.9)
V = 7.54 m/s
<span>Cumulonimbus clouds is what you're looking for.</span>
We use the law of Cosines, resultant force

Here,
and
are forces acting at angle
with each other.
Given
,
and
.
Substituting these given values in above formula we get
.
Thus, the resultant force is 156 N.
The interaction between two like-charged objects is repulsive. ... Positively charged objects and neutral objects attract each other; and negatively charged objects and neutral objects attract each other.