1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
B, do earthworms prefer bright light or darkness!
A glass pipe system has a very corrosive liquid flowing in it (think hydrofluoric acid, say). The liquid will destroy flow meters, but you need to know the flow rate. One way of measuring the flow rate is to add a fluorescent dye to the liquid at a known concentration, and then downstream activate the dye by UV light and then measure the dye concentration by emitted light. If the dye is added at 1.00 g/s, and the dye concentration downstream is 0.050% by mass, what is the unknown flow rate in kg/h
glass
Answer:
The "2" tells us that there are 2 hydrogen atoms in this compound.
Explanation:
<span>Radio waves just like light waves can be reflected refracted and diffracted and polarized. The answer is True. </span>These characteristics are the common phenomena for electromagnetic (EM) waves, and Radio Waves are electromagnetic Waves so much so that they obey reflection, refraction, and diffraction.