![\bf f(x)=(x-6)e^{-3x}\\\\ -----------------------------\\\\ \cfrac{dy}{dx}=1\cdot e^{-3x}+(x-6)-3e^{-3x}\implies \cfrac{dy}{dx}=e^{-3x}[1-3(x-6)] \\\\\\ \cfrac{dy}{dx}=e^{-3x}(19-3x)\implies \cfrac{dy}{dx}=\cfrac{19-3x}{e^{3x}}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D%28x-6%29e%5E%7B-3x%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%5Ccdot%20e%5E%7B-3x%7D%2B%28x-6%29-3e%5E%7B-3x%7D%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%5B1-3%28x-6%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%2819-3x%29%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B19-3x%7D%7Be%5E%7B3x%7D%7D)
set the derivative to 0, solve for "x" to get any critical points
keep in mind, setting the denominator to 0, also gives us critical points, however, in this case, the denominator will never be 0, so... no critical points from there
there's only 1 critical point anyway, and do a first-derivative test on it, check a number before it and after it, to see what sign the derivative has, and thus, whether the graph is going up or down, to check for any extrema
Owed 5920 in taxes
0.12*16000+0.2*20000=5920
It is equal to 0.8 five star please?
Yeah mate, but I don’t know if you need to specifically say but it’s actually an Amazon Prime next day delivery polynomial
Answer:
x<_2
Step-by-step explanation:
first off solve this like a regular equation the >_ dosent matter till later
so basically first multiply - by 13 and -x so you get -13 and x (multiplying two negatives = a positive)
so its 5x-13+x>_9x-7
add 5x and x to get 6x-13 on one side
then you get 6x-13>_9x-7 then subtract -9x from both sides
so its now -3x-13>_-7 add 13 so you get -3x>_6
then divide both sides by -3 (when you divide an equation with a >< or <_ >_ by a negative number that sign switches) so it will now be x<_2
that your final answer hope this helps :)