Answer: The velocity of the first ball is 0.875 m/s if the second ball travels at 1.5 m/s after collision.
Explanation:
Given:
= 0.2 kg,
= 0.15 kg
= 2 m/s,
= 0 m/s,
= ?,
= 1.5 m/s
Formula used is as follows.
![m_{1}v_{1} + m_{2}v_{2} = m_{1}v'_{1} + m_{2}v'_{2}](https://tex.z-dn.net/?f=m_%7B1%7Dv_%7B1%7D%20%2B%20m_%7B2%7Dv_%7B2%7D%20%3D%20m_%7B1%7Dv%27_%7B1%7D%20%2B%20m_%7B2%7Dv%27_%7B2%7D)
where,
v = velocity before collision
v' = velocity after collision
Substitute the values into above formula as follows.
![m_{1}v_{1} + m_{2}v_{2} = m_{1}v'_{1} + m_{2}v'_{2}\\0.2 kg \times 2 m/s + 0.15 kg \times 0 m/s = 0.2 kg \times v'_{1} + 0.15 kg \times 1.5 m/s\\0.4 kg m/s + 0 = 0.2v'_{1} + 0.225 kg m/s\\0.2v'_{1} kg = 0.175 kg m/s\\v'_{1} = \frac{0.175 kg m/s}{0.2 kg}\\= 0.875 m/s](https://tex.z-dn.net/?f=m_%7B1%7Dv_%7B1%7D%20%2B%20m_%7B2%7Dv_%7B2%7D%20%3D%20m_%7B1%7Dv%27_%7B1%7D%20%2B%20m_%7B2%7Dv%27_%7B2%7D%5C%5C0.2%20kg%20%5Ctimes%202%20m%2Fs%20%2B%200.15%20kg%20%5Ctimes%200%20m%2Fs%20%3D%200.2%20kg%20%5Ctimes%20v%27_%7B1%7D%20%2B%200.15%20kg%20%5Ctimes%201.5%20m%2Fs%5C%5C0.4%20kg%20m%2Fs%20%2B%200%20%3D%200.2v%27_%7B1%7D%20%2B%200.225%20kg%20m%2Fs%5C%5C0.2v%27_%7B1%7D%20kg%20%3D%200.175%20kg%20m%2Fs%5C%5Cv%27_%7B1%7D%20%3D%20%5Cfrac%7B0.175%20kg%20m%2Fs%7D%7B0.2%20kg%7D%5C%5C%3D%200.875%20m%2Fs)
Thus, we can conclude that the velocity of the first ball is 0.875 m/s if the second ball travels at 1.5 m/s after collision.