Answer:
The intermolecular forces between CO3^2- and H2O molecules are;
1) London dispersion forces
2) ion-dipole interaction
3) hydrogen bonding
Explanation:
Intermolecular forces are forces of attraction that exits between molecules. These forces are weaker in comparison to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Considering CO3^2- and H2O, we must remember that hydrogen bonds occur whenever hydrogen is bonded to a highly electronegative atom such as oxygen. The carbonate ion is a hydrogen bond acceptor.
Also, the London dispersion forces are present in all molecules and is the first intermolecular interaction in molecular substance. Lastly, ion-dipole interactions exists between water and the carbonate ion.
Answer:
The mean free path = 2.16*10^-6 m
Explanation:
<u>Given:</u>
Pressure of gas P = 100 kPa
Temperature T = 300 K
collision cross section, σ = 2.0*10^-20 m2
Boltzmann constant, k = 1.38*10^-23 J/K
<u>To determine:</u>
The mean free path, λ
<u>Calculation:</u>
The mean free path is related to the collision cross section by the following equation:

where n = number density

Substituting for P, k and T in equation (2) gives:

Next, substituting for n and σ in equation (1) gives:

Explanation:
In the context, a vial which is used in store medical samples is filled with water at room temperature. And the vial is kept on a cold water. Also a water bag containing warm water is kept near the vial.
The cold water kept at the bottom of the vial is having lower kinetic energy while warm water will have higher kinetic energy than the others. Since the water in the vial is at room temperature and it is in touch with the cold blue water, the water in the vial will loose or give its temperature to the cold blue water through conduction as well as convection process since temperature always flows from a hot body towards the cold body.
On the other hand, the warm water placed next tot he vial will give its temperature to the atmosphere.
First, we shall calculate the total number of moles present in the final solution.
Number of moles in 0.50 m NaCl = molarity * volume = 0.50 * 3.0 = 1.5 moles.
Number of moles in 0.2777m NaCl = molarity * volume = 0.2777 * 9.0 = 0.24993 moles
Total number of moles = 1.5 + 0.24993 = 1.74993 moles
Second, we shall calculate the total volume of the final solution.
Total volume = 3 + 9 = 12 litres.
The molarity = total number of moles / total volume = 1.74993 / 12 = 0.1458 m
Answer:
Detail is given below.
Explanation:
Chemical equation:
4NH₃ + 3O₂ → 2N₂ + 6H₂O
This reaction shows that when ammonia react with oxygen it form water and nitrogen gas.
There are two reactants on left hand side oxygen and ammonia. Ammonia is formed when nitrogen and hydrogen react. While on right hand side there are two products nitrogen and water. Water is formed by the reaction of hydrogen and oxygen.
The given reaction also shows that it follow the law of conservation of mass.
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.