In this problem,
Applied force(F) = 10 N
The object’s mass (m) is 5 kg.
Having said that,
An object’s force is equal to the product of its mass and the acceleration it experiences as a result of the applied force.
i.e., Mass + Acceleration = Force (a)
F= m×a
Therefore,
A= F÷m
A= (10÷5) m/sec²
A= 2 m/sec²
Consequently, the object’s acceleration,
A=2 m/sec²
Concept of force and acceleration:
This states that the rate of velocity change of an object is directly proportional to the applied force and moves in the direction of the applied force.
It can be expressed mathematically as force (N) = mass (kg) x acceleration (m/s2). Therefore, an object with constant mass will accelerate in direct proportion to the applied force.
To know more about such problems, visit:
brainly.com/question/16743612
#SPJ4
Answer:

Explanation:
given,
radius of curve = 166 m
angle of the banked road = 11°
mass of car = 736 Kg
speed of the curve = 81 km/h
= 81 x 0.278 = 22.52 m/s
normal force acting on the tires
on tire there will be two force acting on it
first one will be force acting due to weight and the other force acting on the tire is due to centripetal force.




Answer:
= 6.55cm
Explanation:
Given that,
distance = 1.26 m
distance between two fourth-order maxima = 53.6 cm
distance between central bright fringe and fourth order maxima
y = Y / 2
= 53.6cm / 2
= 26.8 cm
=0.268 m
tan θ = y / d
= 0.268 m / 1.26 m
= 0.2127
θ = 12°
4th maxima
d sinθ = 4λ
d / λ = 4 / sinθ
d / λ = 4 / sin 12°
d / λ = 19.239
for first (minimum)
d sinθ = λ / 2
sinθ = λ / 2d
= 1 / 2(19.239)
= 1 / 38.478
= 0.02599
θ = 1.489°
tan θ = y / d
y = d tan θ
= 1.26 tan 1.489°
= 0.03275
the total width of the central bright fringe
Y = 2y
= 2(0.03275)
= 0.0655m
= 6.55cm
This is <span>false. </span>Faraday's Law <span>predicts how a magnetic field interacts with an electric circuit, producing an EMF</span>