To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Answer:
A. Mass(only)
Explanation:
The correct answer is A because if the balloon is filled with air, it's filled with matter. Matter is anything that has space and occupies mass. The air occupies mass in the balloon but that doesn't mean that the balloon is heavier. People confuse themselves with mass and weight saying it means the same thing. Mass, like I said is the amount of matter an object contains whereas weight is how much an object weighs.
Answer:
pressure is equal to the net amount of force acting per unit area. Dimensional Formulae of force is M1L1T-2 and of area is L2. Therefore Pressure's dimension can be obtained by calculating Force by Area. Dimensional formula of pressure difference is M1L-1T-2.
Answer:
Explanation:
Magnitude of frictional force = μ mg
μ is either static or kinetic friction.
To start the crate moving , static friction is calculated .
a ) To start crate moving , force required = μ mg where μ is coefficient of static friction .
force required =.517 x 56.6 x 9.8 = 286.76 N .
b ) to slide the crate across the dock at a constant speed , force required
= μ mg where μ is coefficient of kinetic friction , where μ is kinetic friction
= .26 x 56.6 x 9.8 = 144.21 N .
P=M(mass)G(Gravity)H(Height)
Gravity=9.8
M=1.5 G=9.8 H=35
so multiply all
=514.5 potential energy