1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
3 years ago
12

There are two different alleles for the number of fingers on the hands: 5 finger allele and 6 finger allele. When both the 5 fin

ger allele and the 6 finger allele are present in the same individual, the individual has 6 fingers on the hands. Which allele is dominant?
Physics
1 answer:
padilas [110]3 years ago
8 0

Answer:

The 6 fingers allele is dominant

Explanation:

We are told that the the individual is genotypically heterozygous, that is the have both types of the finger allele: the 5 finger allele and the 6 fingers allele however phenotypically, 6 fingers are observed. From this we can conclude that the 6 fingers allele is the one that is dominant because it is the one that is expressed phenotypically.

You might be interested in
When you stretch a spring 13 cm past its natural length, it exerts a force of 21
zloy xaker [14]

Answer:

A. 1.6 N/cm

Explanation:

spring constant = 21/13 = 1.6 N/cm

8 0
3 years ago
What type of animals does Dr. Grant study?
Rasek [7]
Dr. Alan Grant is the main protagonist in Jurassic Park, with the book written primarily from his perspective. He is a paleontology professor at the University of Denver and receives research funding from the Hammond Foundation. He became a world-renowned paleontologist after discovering dinosaur nest fossils in Montana. Billionaire John Hammond chooses Dr. Grant to evaluate his dinosaur amusement park because of his professional expertise and unbiased opinion on dinosaurs.

Idk if this is related to what you ask but it might help.
7 0
3 years ago
8. Three grams of Bismuth-218 decay to 0.375 grams in one hour. What is the half-
Evgen [1.6K]

Answer: 0.333 h

Explanation:

This problem can be solved using the <u>Radioactive Half Life Formula</u>:  

A=A_{o}.2^{\frac{-t}{H}} (1)  

Where:  

A=0.375 g is the final amount of the material  

A_{o}=3 g is the initial amount of the material  

t=1 h is the time elapsed  

H is the half life of the material (the quantity we are asked to find)  

Knowing this, let's substitute the values and find h from (1):

0.375 g=(3 g)2^{\frac{-1h}{H}} (2)  

\frac{0.375 g}{3 g}=2^{\frac{-1h}{H}} (3)  

Applying natural logarithm in both sides:

ln(\frac{0.375 g}{3 g})=ln(2^{\frac{-1 h}{H}}) (4)  

-2.079=-\frac{1 h}{H}ln(2) (5)  

Clearing H:

H=\frac{-1h}{-2.079}(0.693) (6)  

Finally:

h=0.333 h This is the half-life of the Bismuth-218 isotope

4 0
4 years ago
What unit is used to measure the amount of energy used?
NNADVOKAT [17]

Answer: Joule

Explanation:

5 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
3 years ago
Other questions:
  • With what minimum speed must you toss a 110 g ball straight up to just touch the 11-m-high roof of the gymnasium if you release
    14·1 answer
  • please help!!!!!what is the main function of a telescope? A.it brings scientists closer to distant obejects B. it magnifies ligh
    5·2 answers
  • A concise definition of pair production
    5·1 answer
  • A box slides down a frictionless plane inclined at an angle θ ¸ above the horizontal. The gravitational force on the box is dire
    11·1 answer
  • A 6 kg bowling ball moves with a speed of 3 m/s. How fast does a 7 kg bowling ball need to move so that it has the same kinetic
    5·1 answer
  • A rod has a radius of 10 mm is subjected to an axial load of 15 N such that the axial strain in the rod is ????௫ = 2.75*10-6, de
    13·1 answer
  • A lightning flash may transfer up to 14 C of charge through a potential difference of 107 V
    10·1 answer
  • When air expands adiabatically (without gaining or losing heat), its pressure P and volume V are related by the equation PV1.4=C
    13·2 answers
  • Aluminium is metal or metalloid
    13·2 answers
  • If R1 &lt; R2 &lt; R3, and if these resistors are connected in parallel in a circuit, which one has the greatest voltage drop?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!